修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

4 条数据
?? 中文(中国)
  • Facile Construction of Defect-rich Rhenium Disulfide/Graphite Carbon Nitride Heterojunction via Electrostatic Assembly for fast Charge Separation and Photoactivity Enhancement

    摘要: Graphite carbon nitride (CN) is one of the most researched visible light photocatalysts, but it still cannot be used practically because of its low photoactivity resulting mainly from rapid photogenerated charge recombination. To accelerate charge separation, CN was herein electrostatically assembled with ReS2, a two-dimensional semiconductor to construct heterojunction for the first time. The electrostatic and coordination interactions between CN and defect-rich ReS2 make them close contact to form heterojunctions. The ReS2/CN heterojunction exhibits higher photocatalytic performance in pollutant degradation owing to faster generation of reactive oxygen species than CN, as well as increased visible and near-infrared light absorption because of strong photoabsorption of defect-rich ReS2. The accelerated reactive oxygen species generation for the heterojunction arises from accelerated charge separation, especially fast transfer of holes from CN to ReS2 in assistance of interfacial electric field and great valance-band edge difference. This work provides a novel CN-based heterojunction for photoactivity improvement and illustrates significance of electrostatic attraction in fabricating heterojunctions.

    关键词: electrostatic interaction,photocatalytic,rhenium disulfide,graphite carbon nitride,charge separation

    更新于2025-11-21 11:03:13

  • Van der Waals broken-gap p-n heterojunction tunnel diode based on black phosphorus and rhenium disulfide

    摘要: The broken-gap type-III van der Waals (vdW) heterojunction is of particular interest as there is no overlap between the energy bands of its two stacked materials. Despite several studies on straddling-gap (type-I) and staggered-gap (type-II) vdW heterojunctions, a comprehensive understanding of the current-transport and optoelectronic effects in a type-III broken-gap heterojunction remains elusive. Here, we report gate-tunable current rectifying characteristics in a black phosphorus (BP)/rhenium disulfide (ReS2) broken-gap p-n heterojunction diode. Current-transport in this heterojunction was modeled by using the Simmons approximation through direct tunneling and Fowler?Nordheim tunneling in low- and higher-bias regimes, respectively. We showed that a p-n diode based on a type-III heterojunction is mainly governed by tunneling-mediated transport, but that transport in a type-I p-n heterojunction is dominated by majority carrier diffusion in the higher-bias regime. Upon illumination with a 532-nm-wavelength laser, the BP/ReS2 broken-gap p-n heterojunction showed a photo responsivity of 8 mA/W at a laser power as high as 100 μW and photovoltaic energy conversion with an external peak quantum efficiency of 0.3%. Finally, we demonstrated a binary inverter consisting of BP p-channel and ReS2 n-channel thin film transistors for logic applications.

    关键词: Rhenium disulfide,photovoltaics,quantum tunneling,broken-gap heterojunction,logic circuitry,Black phosphorous

    更新于2025-09-19 17:15:36

  • Probing Distinctive Electron Conduction in Multilayer Rhenium Disulfide

    摘要: Charge carrier transport in multilayer van der Waals (vdW) materials, which comprise multiple conducting layers, is well described using Thomas–Fermi charge screening (λTF) and interlayer resistance (Rint). When both effects occur in carrier transport, a channel centroid migrates along the c-axis according to a vertical electrostatic force, causing redistribution of the conduction centroid in a multilayer system, unlike a conventional bulk material. Thus far, numerous unique properties of vdW materials are discovered, but direct evidence for distinctive charge transport behavior in 2D layered materials is not demonstrated. Herein, the distinctive electron conduction features are reported in a multilayer rhenium disulfide (ReS2), which provides decoupled vdW interaction between adjacent layers and much high interlayer resistivity in comparison with other transition-metal dichalcogenides materials. The existence of two plateaus in its transconductance curve clearly reveals the relocation of conduction paths with respect to the top and bottom surfaces, which is rationalized by a theoretical resistor network model by accounting of λTF and Rint coupling. The effective tunneling distance probed via low-frequency noise spectroscopy further supports the shift of electron conduction channel along the thickness of ReS2.

    关键词: Coulomb screening,charge conduction mechanism,multilayer,transport,anisotropy,rhenium disulfide

    更新于2025-09-04 15:30:14

  • Site‐Selective and van der Waals Epitaxial Growth of Rhenium Disulfide on Graphene

    摘要: The surface property of growth substrate imposes significant influence in the growth behaviors of 2D materials. Rhenium disulfide (ReS2) is a new family of 2D transition metal dichalcogenides with unique distorted 1T crystal structure and thickness-independent direct bandgap. The role of growth substrate is more critical for ReS2 owing to its weak interlayer coupling property, which leads to preferred growth along the out-of-plane direction while suppressing the uniform in-plane growth. Herein, graphene is introduced as the growth substrate for ReS2 and the synthesis of graphene/ReS2 vertical heterostructure is demonstrated via chemical vapor deposition. Compared with the rough surface of SiO2/Si substrate with dangling bonds which hinders the uniform growth of ReS2, the inert and smooth surface nature of graphene sheet provides a lower energy barrier for migration of the adatoms, thereby promoting the growth of ReS2 on the graphene surface along the in-plane direction. Furthermore, patterning of the graphene/ReS2 heterostructure is achieved by the selective growth of ReS2, which is attributed to the strong binding energy between sulfur atoms and graphene surface. The fundamental studies in the role of graphene as the growth template in the formation of van der Waals heterostructures provide better insights into the synthesis of 2D heterostructures.

    关键词: rhenium disulfide,chemical vapor deposition,2D heterostructures,graphene,site-selective growth

    更新于2025-09-04 15:30:14