- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
[IEEE 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Chicago, IL, USA (2019.6.16-2019.6.21)] 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Modelling and Validation on Field of EESS Management Strategies in Grid-Connected PV Systems for End Users
摘要: Sarcasm is a sophisticated form of irony widely used in social networks and microblogging websites. It is usually used to convey implicit information within the message a person transmits. Sarcasm might be used for different purposes, such as criticism or mockery. However, it is hard even for humans to recognize. Therefore, recognizing sarcastic statements can be very useful to improve automatic sentiment analysis of data collected from microblogging websites or social networks. Sentiment Analysis refers to the identification and aggregation of attitudes and opinions expressed by Internet users toward a specific topic. In this paper, we propose a pattern-based approach to detect sarcasm on Twitter. We propose four sets of features that cover the different types of sarcasm we defined. We use those to classify tweets as sarcastic and non-sarcastic. Our proposed approach reaches an accuracy of 83.1% with a precision equal to 91.1%. We also study the importance of each of the proposed sets of features and evaluate its added value to the classification. In particular, we emphasize the importance of pattern-based features for the detection of sarcastic statements.
关键词: Twitter,machine learning,sarcasm detection,sentiment analysis
更新于2025-09-23 15:19:57
-
[IEEE 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) - Munich, Germany (2019.6.23-2019.6.27)] 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) - Comparison of Thin-Film-Transistor and Photonic Crystal Protein Sensors
摘要: Sarcasm is a sophisticated form of irony widely used in social networks and microblogging websites. It is usually used to convey implicit information within the message a person transmits. Sarcasm might be used for different purposes, such as criticism or mockery. However, it is hard even for humans to recognize. Therefore, recognizing sarcastic statements can be very useful to improve automatic sentiment analysis of data collected from microblogging websites or social networks. Sentiment Analysis refers to the identification and aggregation of attitudes and opinions expressed by Internet users toward a specific topic. In this paper, we propose a pattern-based approach to detect sarcasm on Twitter. We propose four sets of features that cover the different types of sarcasm we defined. We use those to classify tweets as sarcastic and non-sarcastic. Our proposed approach reaches an accuracy of 83.1% with a precision equal to 91.1%. We also study the importance of each of the proposed sets of features and evaluate its added value to the classification. In particular, we emphasize the importance of pattern-based features for the detection of sarcastic statements.
关键词: Twitter,sarcasm detection,sentiment analysis,machine learning
更新于2025-09-19 17:13:59
-
[IEEE 2019 IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON) - Valparaiso, Chile (2019.11.13-2019.11.27)] 2019 IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON) - Design of Device IoT Parameter Collector at Photovoltaic Panels
摘要: Sarcasm is a sophisticated form of irony widely used in social networks and microblogging websites. It is usually used to convey implicit information within the message a person transmits. Sarcasm might be used for different purposes, such as criticism or mockery. However, it is hard even for humans to recognize. Therefore, recognizing sarcastic statements can be very useful to improve automatic sentiment analysis of data collected from microblogging websites or social networks. Sentiment Analysis refers to the identification and aggregation of attitudes and opinions expressed by Internet users toward a specific topic. In this paper, we propose a pattern-based approach to detect sarcasm on Twitter. We propose four sets of features that cover the different types of sarcasm we defined. We use those to classify tweets as sarcastic and non-sarcastic. Our proposed approach reaches an accuracy of 83.1% with a precision equal to 91.1%. We also study the importance of each of the proposed sets of features and evaluate its added value to the classification. In particular, we emphasize the importance of pattern-based features for the detection of sarcastic statements.
关键词: Twitter,sarcasm detection,sentiment analysis,machine learning
更新于2025-09-19 17:13:59