- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Size and dimension dependent surface-enhanced Raman scattering properties of well-defined Ag nanocubes
摘要: Understanding the role of the morphology and particle–particle interactions on the plasmonic properties is of significant importance for the development of nanomaterials with excellent optical properties. However, the preparation of precisely defined nanomaterials with sizes that span a large range and their controllable self-assembly still remain a great challenge. Here, a multistep seed-mediated method has been established for preparing uniform Ag nanocubes over a broad size range from nanoscale (50 nm) to microscale (1400 nm) and with different hierarchical nanostructures range from “zero-dimension” (“0D”) to “three-dimension” (“3D”). The influence of the size and the interactions between the Ag nanocubes on their surface-enhanced Raman scattering (SERS) properties have been systematically and quantitatively investigated. It is demonstrated through experiments and finite-difference time-domain (FDTD) calculations that the SERS activity is dependent on the matching of the nanocube size to the excitation wavelength. The optimal combinations are 80, 110 and 130 nm nanocubes with respect to 532, 638 and 785 nm excitation wavelength, respectively. Furthermore, the Raman enhancement of the Ag nanocube hierarchical nanostructures increases rapidly from “0D” to “3D”, due to the extra increase of the hot spots that is attributed to the out-of-plane plasmonic coupling realized in the “3D” hierarchical nanostructures. This work clearly illustrates the quantitative role of the size and dimension of Ag nanocubes on their SERS properties and provides fundamental information for the design of advanced nanomaterials with higher SERS sensitivity.
关键词: Silver nanocubes,Self-assembly,Surface-enhanced Raman scattering,Seed-mediated method
更新于2025-09-23 15:23:52
-
Plasmonic nanopapers: flexible, stable and sensitive multiplex PUF tags for unclonable anti-counterfeiting applications
摘要: Highly flexible and stable plasmonic nanopaper comprised of silver nanocubes and cellulose nanofibres was fabricated through a self-assembly-assisted vacuum filtration method. It shows significant enhancement of the fluorescence emission with an enhancement factor of 3.6 and Raman scattering with an enhancement factor of ~104, excellent mechanical properties with tensile strength of 62.9 MPa and Young’s modulus of 690.9 ± 40 MPa, and a random distribution of Raman intensity across the whole nanopaper. The plasmonic nanopapers were encoded with multiplexed optical signals including surface plasmon resonance, fluorescence and SERS for anti-counterfeiting applications, thus increasing security levels. The surface plasmon resonance and fluorescence information are used as the first layer of security and can be easily verified by the naked eye, while the unclonable SERS mapping is used as the second layer of security and can be readily authenticated by Raman spectroscopy using a computer vision technique.
关键词: cellulose nanofibres,fluorescence enhancement,silver nanocubes,anti-counterfeiting,SERS,plasmonic nanopaper
更新于2025-09-19 17:13:59
-
Hybrid Silver Nanocubes for Improved Plasmon-Enhanced Singlet Oxygen Production and Inactivation of Bacteria
摘要: Plasmonic nanoparticles can strongly interact with adjacent photosensitizer molecules, resulting in significant alteration of their singlet oxygen (1O2) production. In this work, we report the next generation of metal-enhanced 1O2 nanoplatforms exploiting the lightning rod effect, or plasmon hot spots, in anisotropic (non-spherical) metal nanoparticles. We describe the synthesis of Rose Bengal decorated silica-coated silver nanocubes (Ag@SiO2-RB NCs) with silica shell thicknesses ranging from 5 to 50 nm based on an optimized protocol yielding highly homogeneous Ag NCs. Steady-state and time-resolve 1O2 measurements demonstrate not only the silica shell thickness dependence on the metal-enhanced 1O2 production phenomenon, but also the superiority of this next generation of nanoplatforms. A maximum enhancement of 1O2 of approximately 12-fold is observed with a 10 nm silica-shell, which is amongst the largest 1O2 production metal enhancement factor ever reported for a colloidal suspension of nanoparticles. Finally, the Ag@SiO2-RB NCs were benchmarked against Ag@SiO2-RB nanospheres previously reported by our group, and the superior 1O2 production of Ag@SiO2-RB NCs resulted in improved antimicrobial activities in photodynamic inactivation experiments using both gram-positive and -negative bacteria model strains.
关键词: Plasmonic nanoparticles,photodynamic inactivation,singlet oxygen,Rose Bengal,silver nanocubes,bacteria
更新于2025-09-04 15:30:14