修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

3 条数据
?? 中文(中国)
  • [IEEE 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) - Munich, Germany (2019.6.23-2019.6.27)] 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) - Mobile Based in Situ Detection of Live/Dead and Antibiotic Resistant Bacteria by Silver Nanorods Array Sensor Fabricated by Glancing Angle Deposition

    摘要: The rapid in-situ detection of viability of bacteria is essential for human health and environmental care. It has become one of the biggest needs in biological and medical sciences to prevent infections and diseases, which usually occur in hospitals and field clinics. Nowadays, antibiotic resistance (ABR) has been grown as one of the world’s acutest public health problems, which requires a quick and efficient solution. Here, we demonstrate an easy, sensitive, user-friendly, portable, cost effective and time saving approach for detection of live, dead and drug resistant bacteria. Most of the organisms are found to produce H2S gas by their metabolism system. The endogenous H2S evolution was targeted to differentiate between live and dead as well as ABR bacteria. The silver nanorods (AgNRs) arrays sensors were fabricated by glancing angle deposition technique. The colorimetric and water wettability (contact angle) features of as-synthesized AgNRs were found to be highly sensitive and selective for hydrogen sulfide (H2S) gas. E.coli, P. aeruginosa, B. subtilis and S. aureus were used as the model organisms for this study. A drastic visible change in color as well as wetting properties of AgNRs array was observed. To make it easy, a user friendly and field deployable android based mobile app ‘Colorimetric Detector’ was developed. This dual mode detection is facile, inexpensive and can be easily scaled-up in the field of disease diagnosis.

    关键词: mobile app,colorimetric detection,silver nanorods,antibiotic resistance,bacteria detection,H2S gas

    更新于2025-09-11 14:15:04

  • [IEEE 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting - Atlanta, GA, USA (2019.7.7-2019.7.12)] 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting - Generalized Tensor FDTD Method for Sloped Plasmonic Interfaces

    摘要: A tensor finite-difference time-domain (FDTD) method for sloped interfaces is generalized to dispersive media and applied to the study of plasmonic periodic structures formed by silver nanorods. Conventional staircased FDTD exhibits poor convergence properties in this situation, as plasmonic fields are strongly localized right where staircasing errors occur, namely at the air-silver interface. Alternative methods that have been proposed for this problem include the use of a triangular mesh or effective permittivity models that lead to a fourth-order auxiliary differential equation (ADE) connecting D and E at the interface. The proposed approach offers high accuracy, still employing a rectangular FDTD mesh, thus striking a very appealing balance between accuracy and computational efficiency.

    关键词: numerical techniques,plasmonic interfaces,tensor FDTD,silver nanorods,dispersive media

    更新于2025-09-11 14:15:04

  • Smartphone based dual mode in situ detection of viability of bacteria using Ag nanorods array

    摘要: The in-situ and rapid detection of live and dead bacteria is essential for human and environmental care. It has become one of the biggest needs in the biological and medical sciences to prevent infectious diseases, which usually occur in hospitals and field clinics. In the current scenario, antibiotic resistance is one of the severe public health problems, which requires a quick and efficient solution. Here, we report a facile sensitive, portable, user-friendly, cost-effective and time saving approach for detection of live, dead and drug-resistant bacteria. The endogenous H2S evolution was targeted to differentiate between live and dead as well as antibiotic resistant bacteria. The silver nanorods (AgNRs) arrays sensors were fabricated by glancing angle deposition technique. The colorimetric and water wettability features of as-synthesized AgNRs are found to be highly sensitive and selective for H2S. E. coli. P. aeruginosa, B. subtilis and S. aureus were used as a model organism in this study. All the bacteria were found to produce H2S by their metabolism process. In order to detect the antibiotic resistant E. coli were grown in the presence of different concentration of ampicillin in Luria broth. A drastic visible change in color as well as wetting of AgNRs array was observed. To make the technique easy, a user-friendly and field deployable mobile app ‘Colorimetric Detector’ was developed. This technique takes only 4-6 hours whereas the conventional methods need around 24 hours for the same. This dual mode facile and, inexpensive method can be easily scaled up in the field of diagnostics.

    关键词: live and dead bacteria,hydrogen sulfide,glancing angle deposition,Antibiotic resistance,silver nanorods

    更新于2025-09-10 09:29:36