修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

过滤筛选

出版时间
  • 2019
  • 2018
  • 2014
研究主题
  • solar cell
  • hybrid-resonant PWM switching
  • PWM switching
  • MPPT
  • resonant converter
  • solar power
  • Geostationary satellite images
  • Global and direct solar radiation
  • Meteorological station
  • validation
应用领域
  • Electrical Engineering and Automation
  • New Energy Science and Engineering
  • Optoelectronic Information Science and Engineering
  • Optoelectronic Information Materials and Devices
  • Applied Physics
机构单位
  • National technical University “Kharkiv Polytechnic Institute”
  • University of évora
  • Fraunhofer Institute for Solar Energy Systems ISE
  • University of Tunis El Manar
  • Zeal College of Engineering and Research
  • Northern (Arctic) Federal University named after M.V. Lomonosov
  • Cochin University College of Engineering
  • National Renewable Energy Laboratory
  • NED University
  • Universidad Veracruzana
4089 条数据
?? 中文(中国)
  • Bulk luminescent solar concentrators based on organic-inorganic CH3NH3PbBr3 perovskite fluorophores

    摘要: In this paper, we report characterization and performance results of lead bromide perovskite luminescent solar concentrator. CH3NH3PbBr3 fluorophores are synthesized by sonication method and examined by their X-ray diffraction pattern and scanning electron microscopy. Synthesized perovskite shows excitonic absorption at 524 nm and PL emission peak located at 532 nm with a Stokes shift around 8 nm. Micron-sized fluorophores are dissolved in prepared solutions and uniformly embedded in PMMA host with 0.006–0.120%wt concentration. Then, Fabricated devices are cut into 50 × 30 × 5 mm cuboid shapes and placed in a mirror surrounded configuration with an attached photovoltaic cell. Fabricated device is put under standard AM1.5 illumination and the output spectrum from the concentrator is acquired. Re-absorption in the samples is also measured by variable optical path method, showing red-shifts up to 13 nm in the output spectrum. Spatially resolved photo-luminescence maps and optical efficiencies are also presented for each sample. Plus, a Monte-Carlo ray tracing algorithm is developed to assist better understanding the experimental results. Stability of fabricated samples are evaluated under high intensity UV illumination, reporting efficiency reduction around 15% after 24 h. Finally, Comparing current-voltage characterization of the attached photovoltaic cell reveals optimized efficiency enhancement in the 0.04%wt sample above 65%.

    关键词: Perovskites,Monte-Carlo simulation,Re-absorption,Luminescent solar concentrators,Photovoltaic conversion efficiency,Solar cells

    更新于2025-11-14 15:30:11

  • Functionalizing Window Coatings with Luminescence Centers by Combinatorial Sputtering of Scatter-Free Amorphous SiAlON:Eu2+ Thin Film Composition Libraries

    摘要: SiAlON window coatings are applied on an industrial scale to achieve e.g. scratch-resistance and anti-reflection. Doping these SiAlONs with rare-earths adds luminescent functionality, which could be applied in photovoltaics. By using a combinatorial reactive sputtering approach, an amorphous thin film composition library with a Si:Al ratio from 0:062 : 1 to 3:375 : 1 and a Eu doping from 4:8 at:% to 26 at:% is created. This library uniquely combines high absorption, strong emission and absence of light scattering. By combining position-dependent EDX measurements with transmission and emission spectra, properties like the index of refraction, absorption strength, emission wavelength and decay times of the library can directly be related to the composition. Throughout the library, an index of refraction of 1:63 ± 0:03 is observed, typical for a film with low nitrogen content. The library also shows a large absorption coefficient of 1294 ± 8 cm?1 at:%?1. Laser-excited emission spectra show that the library has a strong redshift from 500 nm to 550 nm with increasing Al concentration. An increase in Eu concentration also causes a shift of the emission to red. Decay spectra show that a high degree of Si greatly improves the luminescence intensity. These functionalized SiAlON coatings can be of great interest for transparent and scatter-free luminescent solar concentrators applied as windows.

    关键词: Combinatorial Science,SiAlON,Sputter Deposition,Solar-Conversion

    更新于2025-11-14 15:30:11

  • Dendritic PAMAM polymers for strong perovskite intergranular interaction enhancing power conversion efficiency and stability of perovskite solar cells

    摘要: The modification of perovskite intergranular perovskite/perovskite interface plays a critical role for power conversion efficiency (PCE) and stability of perovskite solar cells (PSCs). In this work, polyamidoamine (PAMAM) dendrimers are utilized as the dendritic crystallization framework templating the perovskite-crystallizing process. The interactions at the perovskite intergranular interface are considerably strengthened at an ambient environment with dendritic PAMAMs crosslinking the perovskite grains. Consequently, the perovskite morphology is remarkably improved by suppressing the grain/grain-aggregate boundaries for the pinhole removal, which produces a compact, uniform and non-pinhole perovskite film. Finally, the strengthened interfacial interactions dramatically enhance the PCE value of unencapsulated PSCs about 42.6% at an ambient condition. Besides, the unencapsulated PAMAM-modified device can keep 73% of initial PCE value in 400 h while the control device decays to 5% of initial PCE value in 50 h. These results reveal that dendritic polymers might remarkably improve the PCE value and the stability of PSCs. This work provides a new molecular design guideline to effectively regulate the perovskite intergranular interfacial interactions.

    关键词: Grain boundary,Interfacial interaction,Intergranular interface,Dendrimer,Perovskite solar cell

    更新于2025-11-14 15:27:09

  • Electrospun carbon nanofibers decorated with Pt-Ni2P nanoparticles as high efficiency counter electrode for dye-sensitized solar cells

    摘要: Carbon nanofibers (CNs) supported by Pt and Ni2P nanoparticles (Pt-Ni2P/CNs) are successfully synthesized and explored as counter electrodes for dye-sensitized solar cells (DSSCs) for the first time. Pt and Ni2P nanoparticles are prepared by stabilization and carbonization of electrospun nanofibers, and subsequently controllable Pt and Ni2P nanoparticles are grown on surface of CNs obtained through redox reaction. A series of electrochemical measurements analysis confirm that the Pt-Ni2P/CNs composite have simultaneously superior electrocatalytic activity and enhanced electrical conductivity compared with those of individual CNs and Pt. Accordingly, DSSCs using the composite Pt-Ni2P/CNs as a counter electrode exhibit a excellent photovoltaic performance (power conversion efficiency of 9.11%), which is much higher than conventional Pt/CNs counter electrode (power conversion efficiency of 8.35%), owing to the collective effect of the high electrical conductivity originated from carbon nanofibers and superior electrocatalytic activity arising from Pt/CNs nanoparticles.

    关键词: counter electrode,electrospun,dye-sensitized solar cells,Pt and Ni2P nanoparticles,redox reaction

    更新于2025-11-14 15:27:09

  • Au@Ag@Ag2S heterogeneous plasmonic nanorods for enhanced dye-sensitized solar cell performance

    摘要: Au@Ag@Ag2S heterogeneous nanorods (NRs) with two strong plasmonic absorptive bands were developed for boosting the performance of dye-sensitized solar cells, and the remarkably enhanced plasmonic devices were achieved. By doping different concentrations of the Au@Ag@Ag2S NRs within the TiO2 photoanode layers, various enhanced effects of the plasmonic devices were obtained. With the incorporation of the typical Au@Ag@Ag2S NRs (their aspect ratios: 2.7) into the TiO2 photoanodes, the top efficiency of 6.51% of the fabricated plasmonic photovoltaic devices at their doped concentrations of the 2.31% was observed, exhibiting dramatic 40% enhancement than that of the conventional dye-sensitized solar cells (bare device: 4.65%). Benefiting from effective surface plasmon effects of the Au@Ag@Ag2S NRs, the light-harvesting abilities of photoanodes and dyes in devices are dramatically enhanced, which in return boost the whole performance of photovoltaic devices significantly.

    关键词: Dye-sensitized solar cell,Nanorod,Power conversion efficiency,Plasmonic effect

    更新于2025-11-14 15:27:09

  • One-step fabrication of effective mesoporous layer consisted of self-assembled MgO/TiO<sub>2</sub> core/shell nanoparticles for mesostructured perovskite solar cells

    摘要: perovskite directly, which can not only passivate surface defects and reduce charge-suppressed J-V hysteresis. Meanwhile, the photovoltaic characteristics and the well-power conversion efficiency (PCE) was increased from 13.13% to 16.30% with well-interface and electrons transfer in PSCs. Based on the mesoporous layer consisting of nanoparticles instead of adding an additional surface modified layer for mesostructured recombination, but also facilitate charge-extraction at the mesoporous layer/perovskite perovskite solar cells (PSCs). An amorphous ultrathin outer nanolayer of MgO was Such self-assembled MgO/TiO2 core/shell nanostructures would retain the mesoporous of PSCs was 1.00 V, 4.2% higher than the uncoated TiO2 based PSCs, and the obtained structure feature, supply more contact interface of MgO/TiO2 and separate the TiO2 and conformally coated onto TiO2 core nanoparticles in a one-step bottom-up approach. proposed an efficient nanoparticulate mesoporous layer consisted of coated TiO2 optimized MgO-coated TiO2 nanoparticles, the corresponding open circuit voltage (VOC) Considering the intrinsic rich defect, poor H2O or UV light stability of TiO2, we resistance is obtained for the cell based on m-TiO2 with MgO coating. In addition, we behaved junction property were further clarified by the ideal model, a much lower series provided an easy regulated uniform coating route to fabricate well-defined core-shell nanoparticles with modified properties.

    关键词: Uniform coating,mesoporous layer,Core-shell nanostructure,Perovskite solar cells

    更新于2025-11-14 15:27:09

  • Rationally Designed Fe2O3/GO/WO3 Z-Scheme Photocatalyst for Enhanced Solar light Photocatalytic Water Remediation

    摘要: A novel ternary Fe2O3/GO/WO3 all-solid-state Z-Scheme photocatalyst was rationally designed. Structural, morphological, optical and electronic properties of the synthesized nanocomposite were investigated by XRD, SEM, TEM, UV-vis Diffuse Reflectance and Raman spectroscopy. The results revealed the successful synthesis of the nanocomposite materials. Uniquely, double absorption edges at 2.0 and 2.3 eV for Fe2O3/WO3 and triple absorption edges at 1.5, 1.8 and 2.1 eV for Fe2O3/GO/WO3 were investigated for the first time. Lower absorption band edges dominated for both Fe2O3/WO3 and Fe2O3/GO/WO3, while higher absorption edges dominated for pure nanomaterials. The enhanced interaction among GO, Fe2O3 and WO3 matrix explained the reduction in the CB energy leading to efficient electron separation and transformation and consequently improving the photocatalytic activity. The visible light photocatalytic performance of Fe2O3/GO/WO3 nanocomposites were evaluated for degradation of methylene blue (MB) and crystal violet (CV) dyes as model water pollutants. The photocatalytic activity for degradation of both dyes was found to be greatly enhanced in the presence of ternary Fe2O3/GO/WO3 nanocomposite as compared to nanocomposite systems of Fe2O3/WO3, WO3/GO and Fe2O3/GO or pure Fe2O3 and WO3 nanomaterials. The enhancement in the photocatalytic performance of ternary Fe2O3/GO/WO3 nanocomposite was proven to be due to the all-solid-state Z-Scheme in which the photogenerated electrons in the CB of photosystem I (WO3) transferred through GO mediator and recombined with the photogenerated holes in the VB of Fe2O3 (photosystem II). So that, the electron-hole pair recombination can be suppressed in both systems. Moreover, the photocatalytic activity of the best Fe2O3/GO/WO3 nanocomposite (FGW 30) has been tested for the degradation of phenol. The results show that 95.4 % of phenol was degraded in 120 minutes. Thus, this study provides an efficient green Z-Scheme photocatalyst for water remediation utilizing solar light.

    关键词: solar light photocatalysis,organic dyes degradation,all-solid-state Z-Scheme,Ternary Fe2O3/GO/WO3,phenol mineralization

    更新于2025-11-14 15:26:12

  • Solubilization of Carbon Nanotubes with Ethylene-Vinyl Acetate for Solution-Processed Conductive Films and Charge Extraction Layers in Perovskite Solar Cells

    摘要: Carbon nanotube (CNT) solubilization via non-covalent wrapping of conjugated semiconducting polymers is a common technique used to produce stable dispersions for depositing CNTs from solution. Here, we report the use of a non-conjugated insulating polymer, ethylene vinyl acetate (EVA), to disperse multi- and single-walled CNTs (MWCNT and SWCNT) in organic solvents. We demonstrate that despite the insulating nature of the EVA, we can produce semitransparent films with conductivities of up to 34 S/cm. We show, using photoluminescence spectroscopy, that the EVA strongly binds to individual CNTs, thus making them soluble, preventing aggregation, and facilitating the deposition of high-quality films. To prove the good electronic properties of this composite, we have fabricated perovskite solar cells using EVA/SWCNTs and EVA/MWCNTs as selective hole contact, obtaining power conversion efficiencies of up to 17.1%, demonstrating that the insulating polymer does not prevent the charge transfer from the active material to the CNTs.

    关键词: perovskite solar cells,carbon nanotubes,insulating polymer,conductive films,CNT polymer functionalization

    更新于2025-11-14 15:25:21

  • Charge extraction via graded doping of hole transport layers gives highly luminescent and stable metal halide perovskite devices

    摘要: One source of instability in perovskite solar cells (PSCs) is interfacial defects, particularly those that exist between the perovskite and the hole transport layer (HTL). We demonstrate that thermally evaporated dopant-free tetracene (120 nm) on top of the perovskite layer, capped with a lithium-doped Spiro-OMeTAD layer (200 nm) and top gold electrode, offers an excellent hole-extracting stack with minimal interfacial defect levels. For a perovskite layer interfaced between these graded HTLs and a mesoporous TiO2 electron-extracting layer, its photoluminescence yield reaches 15% compared to 5% for the perovskite layer interfaced between TiO2 and Spiro-OMeTAD alone. For PSCs with graded HTL structure, we demonstrate efficiency of up to 21.6% and an extended power output of over 550 hours of continuous illumination at AM1.5G, retaining more than 90% of the initial performance and thus validating our approach. Our findings represent a breakthrough in the construction of stable PSCs with minimized nonradiative losses.

    关键词: perovskite solar cells,stability,charge extraction,photoluminescence,hole transport layers,graded doping

    更新于2025-11-14 15:25:21

  • All-Thin-Film Tandem Cells Based on Liquid Phase Crystallized Silicon and Perovskites

    摘要: Combining the emerging perovskite solar cell technology with existing silicon approaches in a tandem cell design offers the possibility for new low-cost high-performance devices. In this study, the potential of liquid phase crystallized silicon (LPC-Si) solar cells as a bottom cell in an all-thin-film tandem device is investigated. By optimizing the current output of a four terminal tandem using optical simulations and state-of-the-art electrical properties of the top and bottom cells, we show that an efficiency of 23.3% can be reached, where 7.2% are attributed to the LPC-Si bottom cell. Including the potential of future developments of both sub cells, efficiencies of over 28% are estimated. Electrical and optical measurements of the bottom cell are performed by attaching a perovskite and a cutoff filter to the front side of the interdigitated back contacted LPC-Si cells. The measurements using a cutoff filter show a high impact of the filtered incident light spectrum on the open circuit voltage of the LPC-Si cell. A comparison of the simulated and measured absorptance shows that especially the optical properties of the transparent conductive oxides and recombination losses in the LPC-Si cause high current losses. Combining the measured data of the filtered LPC-Si cells and the semitransparent perovskite cells, yields a realistic estimation for the efficiency of a state-of-the-art four-terminal tandem device of 19.3%.

    关键词: tandem devices,Liquid phase crystallization (LPC),perovskite solar cells,thin film photovoltaics

    更新于2025-11-14 15:25:21