- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Colloidally synthesized defect-rich $$\hbox {MoSe}_{2}$$ MoSe 2 nanosheets for superior catalytic activity
摘要: Transition metal dichalcogenide (TMD) nanosheets (NSs) with defect-rich and vertically aligned edges are highly advantageous for various catalytic applications. However, colloidal synthesis of defect-rich NSs with thickness variation has been a challenging task. Here, we report a colloidal synthesis of 2H-MoSe2 NSs having a large number of defects and vertically aligned edges, where the thickness is varied by changing the amount of coordinating solvent. The Se-vacancies in these NSs have introduced defect sites which are corroborated by the presence of additional vibration modes in Raman spectra. These NSs exhibit electrocatalytic hydrogen evolution reaction performances with a low overpotential (210–225 mV) at 10 mA cm?2 current density and a small Tafel slope (54–68 mV per decade). Moreover, these MoSe2 NSs are also employed as counter electrodes (CEs) for the fabrication of dye sensitized solar cells via a cost-effective and simplified procedure. The power conversion efficiencies of 7.02 ± 0.18%, comparable with Pt CE (7.84 ± 0.10%) could be routinely achieved. These results demonstrate a novel synthetic strategy to prepare layered TMDs with superior catalytic applications.
关键词: counter electrode,Transition metal dichalcogenides,dye sensitized solar cells,MoSe2 nanosheets,hydrogen evolution reaction
更新于2025-11-19 16:56:35
-
A systematic approach to ZnO nanoparticle-assisted electron transport bilayer for high efficiency and stable perovskite solar cells
摘要: Minimizing the interface loss of perovskite solar cells is critical to achieving high photovoltaic performance, and intensive research is underway on interfacial engineering in this regard. In this work, we introduce a ZnO nanoparticles (ZnO NPs) interlayer between phenyl-C61-butyric acid methyl ester (PCBM) and a metal electrode in order to reduce the interface loss due to charge recombination and device degradation, and also investigate the dependence of device performance on the thickness and morphology of the PCBM and PCBM/ZnO electron transport bilayer. After achieving optimized PCBM and ZnO thickness, the PCBM/ZnO bilayer-based devices reached an average power conversion efficiency of 15.63% (Max. 16.39%) with an open circuit voltage of 1.05 V, short circuit current density of 18.69 mA cm-2, and fill factor of 79.95%. In addition, hysteresis behavior and atmospheric stability are significantly improved by the incorporation of a PCBM/ZnO bilayer. Therefore, the implementation of a PCBM/ZnO electron transport bilayer is a promising approach toward achieving a high-efficiency PSC with stable power output (low J-V hysteresis) and durability.
关键词: ZnO nanoparticles,interfacial engineering,stable perovskite solar cells,interface loss,high-efficiency perovskite solar cells,electron transport bilayer
更新于2025-11-19 16:46:39
-
Dual-band luminescent solar converter-coupled dye-sensitized solar cells for high performance semi-transparent photovoltaic device
摘要: We demonstrate a high-performance semi-transparent solar cell using a dye-sensitized solar cell (DSSC) coupled with a luminescent solar converter (LSC) that absorbs a dual band. We present an architecture of a sandwich-type, downshift (DS) LSC / DSSC / upconversion (UC) LSC. The DS LSC, including anthracene, converts ultraviolet light to visible light, and the UC LSC, which contains a dye pair of meso-tetraphenyl-tetrabenzoporphine palladium / 9,10-bis-penylethynyllanthrancane, converts near-infrared light into visible light. Thus, the dual band LSC improved the power conversion efficiency (PCE) of the DSSC without a significant decrease in visible transmittance. We optimize the concentration of the fluorescence dye to obtain maximum photoluminescence in each LSC. We also optimize backward scattering by introducing nanoparticle scatterers in UC LSC. The dual LSC-DSSC showed an average visible transmittance of 42% and achieved an PCE of up to 7.8%. Our incorporation of broadband-wavelength-harvestable LSCs with a DSSC presents a direction for semi-transparent photovoltaic devices.
关键词: Luminescence solar concentrator,Semi-transparent photovoltaic devices,Downshift,Photon upconversion,Dye-sensitized solar cells
更新于2025-11-19 16:46:39
-
2D Photonic Crystal Nanodisk Array as Electron Transport Layer for Highly Efficient Perovskite Solar Cells
摘要: Perovskite solar cells (PSCs) are currently exhibiting reproducible high efficiency; the manufacturing of low cost, scalable electron transport layers (ETLs) is becoming increasingly important. However, this remains a challenge for electron transport layers that exhibit excellent optical/electrical properties while being a thin film of simple morphology. Here we demonstrate the PSC of a 2D photonic crystal nanodisk (ND) array ETL that is compact, but greatly enhances light harvesting. The ND array is fabricated by nanosphere lithography using a monolayer of self-assembled polymer spheres as a physical mask. We fabricate ND arrays of various lattice constants simply by controlling the size of the polymer spheres. Optimal ND arrays exhibit strong forward scattering and optical confinement effects, greatly improving light harvesting in the perovskite layer. We also observe that the ND array improves charge transport by reducing contact resistance with the perovskite layer. ND array ETL PSCs reach 19% maximum power conversion efficiency, with low photocurrent-voltage hysteresis and stable photocurrent output.
关键词: optical confinement,2D photonic crystals,nanodisk array,electron transport layer,perovskite solar cells,forward scattering
更新于2025-11-19 16:46:39
-
Investigation of sol-gel and nanoparticle-based NiOx hole transporting layer for high-performance planar perovskite solar cells
摘要: We conduct a comprehensive study on and comparison of sol-gel and nanoparticles (NPs)-based nickel oxide hole-transporting layer (HTL) for high-performance planar perovskite solar cells (PSCs). The characteristics and film properties of sol-gel and NPs were systemically investigated using ultraviolet photoelectron spectroscopy (UPS), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and photoluminescence (PL), and its effect on device-performance was also examined using J-V characteristics, quantum-efficiency, and the VOC dependence of the light intensity. Through this comparison of two types of HTL and their device-performances, these studies can provide sufficient and robust information for nickel oxide-based PSCs, and furthermore, the overall results and discussions can be useful for high-performance PSCs.
关键词: Nickel oxide,Planar perovskite solar cells,Hole transporting layer,Sol-gel,Nanoparticles
更新于2025-11-19 16:46:39
-
RbF post deposition treatment for narrow bandgap Cu(In,Ga)Se2 solar cells
摘要: Multi-junction solar cells are known to have a considerably increased efficiency potential over their typical single junction counterparts. In order to produce low cost and lightweight multi-junction devices, the availability of suitable narrow (<1.1 eV) bandgap bottom cells is paramount. A possible absorber for such a bottom cell is the Cu(In,Ga)Se2 (CIGS) compound semiconductor, one of the most efficient thin film materials to date. In this contribution we report on the RbF post deposition treatment of narrow bandgap CIGS absorbers grown with a single bandgap grading approach. We discuss the necessary deposition conditions and the observed improvements on solar cells performance. A certified record efficiency of 18.0 % for an absorber with 1.00 eV optoelectronic bandgap is presented and its suitability for perovskite/CIGS tandem devices is shown.
关键词: Post deposition treatment,Narrow bandgap,Tandem solar cells,Thin film solar cells,photovoltaics,Rubidium fluoride,Copper indium gallium selenide
更新于2025-11-14 17:28:48
-
Device simulation of Cu(In,Ga)Se2 solar cells by means of voltage dependent admittance spectroscopy
摘要: The simulation of solar cell devices is important for the understanding of defect physics and loss mechanisms in real solar cells. On the other hand, voltage dependent admittance spectroscopy delivers essential information for establishing a baseline simulation model of Cu(In,Ga)Se2 (CIGSe) solar cells. Here we give an explanation for the weak temperature dependence of the N1-signal, the latter being not compatible with a bulk defect or with a simple hole barrier at the Mo back contact. Furthermore, we find a Ed,IF – EV ≈ 0.3 eV deep recombination-active acceptor state at the absorber/buffer interface made of air-light exposed CIGSe absorbers. This gives us the ability to explain the reduction of power conversion efficiency of solar cells made from air-light exposed absorbers. From the voltage dependent capacitance step of this interface defect we can deduce the formerly unknown position of the Fermi level at the hetero junction in equilibrium which is close to mid-gap. Simulation of dark J-V curves allows a refinement of the parameter of this absorber/buffer interface defect, resulting in a defect density of Nd,IF ≈ 3.5·1011 cm-2 as well as capture cross sections of σn ≈ 4·10-16 cm2 for electrons and σp ≈ 3·10-11 cm2 for holes.
关键词: device simulation,Cu(In,Ga)Se2,admittance spectroscopy,defect physics,solar cells
更新于2025-11-14 17:28:48
-
Manufacturing of All Inkjet-Printed Organic Photovoltaic Cell Arrays and Evaluating their Suitability for Flexible Electronics
摘要: The generation of electrical energy depending on renewable sources is rapidly growing and gaining serious attention due to its green sustainability. With fewer adverse impacts on the environment, the sun is considered as a nearly infinite source of renewable energy in the production of electrical energy using photovoltaic devices. On the other end, organic photovoltaic (OPV) is the class of solar cells that offers several advantages such as mechanical flexibility, solution processability, environmental friendliness, and being lightweight. In this research, we demonstrate the manufacturing route for printed OPV device arrays based on conventional architecture and using inkjet printing technology over an industrial platform. Inkjet technology is presently considered to be one of the most matured digital manufacturing technologies because it offers inherent additive nature and last stage customization flexibility (if the main goal is to obtain custom design devices). In this research paper, commercially available electronically functional inks were carefully selected and then implemented to show the importance of compatibility between OPV material stacks and the device architecture. One of the main outcomes of this work is that the manufacturing of the OPV devices was accomplished using inkjet technology in massive numbers ranging up to 1500 containing different device sizes, all of which were deposited on a flexible polymeric film and under normal atmospheric conditions. In this investigation, it was found that with a set of correct functional materials and architecture, a manufacturing yield of more than 85% could be accomplished, which would reflect high manufacturing repeatability, deposition accuracy, and processability of the inkjet technology.
关键词: inkjet technology,flexible electronics,organic photovoltaics,Indium Tin Oxide (ITO) free solar cells
更新于2025-11-14 17:28:48
-
High lying energy of charge-transfer states and small energetic offsets enabled by fluorinated quinoxaline-based alternating polymer and alkyl-thienyl side-chain modified non-fullerene acceptor
摘要: Significant driving forces are the prerequisite to achieve fast and efficient charge separation in fullerene derivatives-based polymer solar cells to achieve high power conversion efficiency (PCE). However, the large driving forces both in photo-induced hole transfer (PHT) and in photo-induced electron transfer (PET) processes lead to significant energy losses, resulting in low open-circuit voltage in the devices. Recent studies indicate the driving forces in non-fullerene acceptors-based devices can be reduced to very low values but still with high PCE and low energy losses. Herein, we report a new donor:acceptor system with high lying energy of charge-transfer excitons (ECT) of 1.50 eV and very small driving forces (PHT of 0.28 eV and PET of 0.11 eV), in which a fluorinated quinoxaline-based alternating polymer (FTQ) and an alkyl-thienyl side-chain modified small molecule (ITIC-Th) are taken as the donor material and non-fullerene acceptor material, respectively. A high power conversion efficiency (PCE) of 8.19% with maximal external quantum efficiency of 71% are achieved successfully in FTQ:ITIC-Th-based device after appropriate thermal annealing treatment, indicating FTQ can be further applied as donor materials with other highly efficient NF-acceptors to achieve enhanced performances and low energy losses.
关键词: Power conversion efficiency,Driving forces,Energy of charge-transfer states,Polymer solar cells
更新于2025-11-14 17:28:48
-
Copper-Based Volumetric Filler Dedicated for Ag Paste for Depositing the Front Electrodes by Printing on Solar Si Cells
摘要: In this work we present research results on a new paste NPCuXX (where: NP—new paste, CuXX—component, XX—a modifier consisting of Ni and other important elements) based on a copper composite (CuXX) for fabrication of front electrodes in silicon solar cells. The CuXX composite is obtained by chemical processing of copper powder particles and can be used in two ways: as an additive to commercially available paste or as a base material for a new paste, NPCuXX. The CuXX offers the possibility to exchange up to 30 and 50 wt.% Ag into Cu, which significantly decreases the solar cells material costs, and therefore, the overall solar cell price. Emphasis was placed on a proper mass suitable fabrication process of the CuXX component. The NPCuXX paste has been applied both to conventional cell structures such as aluminum-back surface field (Al-BSF) and passivated emitter and rear contact (PERC), and finally solar cells with front electrodes deposited by screen-printing method were fabricated and characterized by current-voltage techniques. This paper reports the first implementation of the copper volumetric material into a screen print paste used in a high-temperature metallization process to fabricate the front contacts of Si solar cells with a highest fill factor of 77.92 and 77.69% for the abovementioned structures, respectively.
关键词: crystalline silicon solar cells,front electrode,copper-based volumetric filler
更新于2025-11-14 17:04:02