- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
BiF3 octahedrons: A potential natural solar light active photocatalyst for the degradation of Rhodamine B dye in aqueous phase
摘要: Herein, we report the successful synthesis of BiF3 octahedrons via facile hydrothermal process as potential solar light active catalyst for the photocatalytic degradation of Rhodamine B (RhB) dye in aqueous phase. The synthesized BiF3 octahedrons were characterized by several techniques such as X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), transmission electron microscope (TEM), Fourier transform infrared (FT-IR) spectroscopy, UV-diffuse reflectance spectroscopy (UV-DRS), photoluminescence (PL) spectroscopy, thermogravimetric analysis (TGA) and Brunauer-Emmett-Teller (BET) techniques in order to observe the structural, morphological, optical and luminescence properties. The synthesized octahedrons possess the high density growth, pure and well-crystalline with cubic phase structure and band gap of 3.98 eV. As a potential solar light active photocatalyst, the synthesized BiF3 octahedrons exhibited ~95.7% degradation of RhB in 50 min. The effect of different process parameters such as pH and catalyst dose on the degradation of RhB was also explored. Interestingly, the synthesized BiF3 octahedrons demonstrated better photocatalytic performance compared to several commercially available photocatalysts such as TiO2 (PC-500), SnO2 and ZnS. Further, it was observed that the degradation of RhB over the prepared BiF3 octahedrons obeyed the pseudo first-order reaction kinetics with rate constant of 0.06393 min-1. The scavenger experiments verified the role of h+, e─, O2 .─, ?OH and ?OHs in the photocatalytic degradation process and a plausible photocatalytic mechanism has also been proposed.
关键词: Rhodamine B,Photocatalysis,Solar-light irradiation,BiF3 octahedrons
更新于2025-09-23 15:23:52
-
Prussian blue-encapsulated Fe3O4 nanoparticles for reusable photothermal sterilization of water
摘要: Waterborne health issues continue to grow despite the large number of available solutions. Current sterilization techniques to fight with waterborne diseases struggle to meet the demands on cost, efficiency and reach. Effective alternatives are pressingly required. Here we introduce Prussian blue coated ferroferric oxide (Fe3O4@PB) composites for water sterilization. The composites exhibit superior photothermal inactivation of bacteria under solar-light irradiation, with nearly complete inactivation of bacterial cells in only 15 min. Even for the mixed bacteria in authentic water matrices, the composites show excellent bacterial inactivation performance. Moreover, the highly magnetized iron core of the Fe3O4@PB enables magnetic separation and recycling. Multiple cycle runs reveal that Fe3O4@PB composites have exceptional stability and reusability. This work demonstrates a scalable, low-cost, high-efficiency and reusable sterilization method to improve water quality and safety.
关键词: Solar-light irradiation,Prussian blue,Recyclability,Water security,Photothermal sterilization
更新于2025-09-23 15:22:29
-
{0 0 1}-Facet-Exposed Ag <sub/>4</sub> V <sub/>2</sub> O <sub/>7</sub> Nanoplates: Additive-Free Hydrothermal Synthesis and Enhanced Photocatalytic Activity
摘要: The synthesis of silver pyrovanadate, Ag4V2O7, nanoplates with exposed {0 0 1}-facets by a facile, additive-free hydrothermal method was described in this paper. The photocatalytic activity of rhodamine B over Ag4V2O7 samples under solar light irradiation was also evaluated. By using an equimolar mixture of NH4VO3 and AgNO3 with the presence of a suitable amount of ammonia, Ag4V2O7 nanoplates were obtained readily and purely at temperatures from 100 to 140°C for 4 h. The c-axis orientation growth of Ag4V2O7 nanoplates occurred and increased monotonously with temperatures in the range of over 100 up to 140°C. Further increase in hydrothermal temperature up to 220°C, the Ag4V2O7 phase no longer existed and the β-AgVO3 phase was formed instead. The photocatalytic activity of the optimized Ag4V2O7 sample comprising {0 0 1}-facet-exposed nanoplates with the highest degree of orientation was significantly higher than that of the random-oriented sample. The effects of using ammonia as a complexing agent on the structure, microstructure, texture, exposed facet, and photocatalytic activity of Ag4V2O7 samples were also investigated for the first time.
关键词: photocatalytic activity,hydrothermal synthesis,Ag4V2O7,rhodamine B,nanoplates,solar light irradiation
更新于2025-09-23 15:21:01
-
Facile ionothermal synthesis of TiO2 nanorods for photocatalytic H2 generation
摘要: Facile ionothermal method has been employed to synthesize One-dimensional (1-D) mixed phase TiO2 nanorods (NRs) using ionic liquid as the reaction medium. The PXRD pattern reveals the formation of mixed phase TiO2 having 68.3% of anatase and 31.7% rutile phase with average crystallite size of ~ 10?nm. TEM images depict the average thickness of TiO2 NRs are in the range 50–100?nm. The 1-D mixed phase TiO2 NRs showed 5 times better hydrogen production activity than P-25 in the water-glycerol mixture under solar light irradiation. The reason could be the synergetic effect and unique optical properties of 1-D anatase–rutile TiO2 mixed-phase system.
关键词: solar light irradiation,TiO2 nanorods,mixed phase,ionothermal synthesis,photocatalytic H2 generation
更新于2025-09-10 09:29:36