修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

109 条数据
?? 中文(中国)
  • L-band Wavelength-Switchable Dissipative Soliton Resonance Er-doped Fiber Laser

    摘要: The experiment reports a kind of L-band dissipative soliton resonance (DSR) nanosecond Er-doped fiber laser. The passive mode-locked L-band DSR pulse is achieved in a figure-eight structure by using the nonlinear-amplifying-loop-mirror (NALM). The repetition rate of pulse is 468 kHz. At the maximum pump power of 398 mW, the output power is 25 mW with a pulse energy of 45 nJ. By adjustment of polarization state in cavity, the output pulse can be switched among 4 different DSR states with central wavelength of 1572, 1585, 1590 and 1605 nm discretely, presenting different peak power and pulse width. We can determine that the adjustment of polarization state changes the loss spectra of cavity and the 4 DSR states operate in different balance points. The tunable DSR pulse duration is from 120 to 150 ns by increasing the central wavelength.

    关键词: mode-locked lasers,solitons,Fiber lasers

    更新于2025-09-16 10:30:52

  • Soliton Behaviours for the Conformable Spacea??Time Fractional Complex Ginzburga??Landau Equation in Optical Fibers

    摘要: In this work, we investigate the conformable space–time fractional complex Ginzburg–Landau (GL) equation dominated by three types of nonlinear effects. These types of nonlinearity include Kerr law, power law, and dual-power law. The symmetry case in the GL equation due to the three types of nonlinearity is presented. The governing model is dealt with by a straightforward mathematical technique, where the fractional differential equation is reduced to a ?rst-order nonlinear ordinary differential equation with solution expressed in the form of the Weierstrass elliptic function. The relation between the Weierstrass elliptic function and hyperbolic functions enables us to derive two types of optical soliton solutions, namely, bright and singular solitons. Restrictions for the validity of the optical soliton solutions are given. To shed light on the behaviour of solitons, the graphical illustrations of obtained solutions are represented for different values of various parameters. The symmetrical structure of some extracted solitons is deduced when the fractional derivative parameters for space and time are symmetric.

    关键词: optical solitons,Weierstrass elliptic function,Ginzburg–Landau equation

    更新于2025-09-16 10:30:52

  • Interactions between M-typed dark solitons in nonlinear optics

    摘要: Solitons are used in such field as nonlinear optics. In this manuscript, interactions between M-typed dark solitons are investigated analytically in the decreasing dispersion fiber. With symbolic computation, interactions between them are simulated via the analytic two-soliton solution. Relevant interaction characteristics of them are analyzed. Method of weakening soliton interaction is suggested.

    关键词: Analytic solution,Dark solitons,Nonlinear optics,Decreasing dispersion fiber

    更新于2025-09-16 10:30:52

  • 35 fs, all-polarization-maintaining MOPA laser system

    摘要: We have experimentally observed ultrashort pulse in a simple, all-polarization-maintaining fiber, master oscillator and power amplifier laser. A semiconductor saturable mirror (SESAM) module is used as the mode locker. The ultrashort pulse exhibits perfect Gaussian spectrum without any fine structure. The 20 dB pulse spectral width is 28 nm, and the pulse duration directly output from the oscillator is 268.6 fs. Via a two-stage amplifier, the pulse spectrum is greatly broadened to 43 nm, and the pulse duration lengths to 0.9 ps. Moreover, after compression, a typical saddle-shaped spectrum appears and the spectral bandwidth broadens to 121 nm; the pulse duration is compressed to ~35 fs with a pulse peak power of 22.79 kW, which is high enough to stimulate a one-octave supercontinuum spectrum. Due to the polarization-maintaining structure and high reliability of SESAM, the whole system exhibits strong environmental stability. Experimental observation reveals that such a fiber laser with a very simple structure exhibits excellent performance, and could be applied in the area of optical frequency comb.

    关键词: ultrafast fiber lasers,pulse propagation and temporal solitons,pulse compression

    更新于2025-09-16 10:30:52

  • Breathing dissipative solitons in mode-locked fiber lasers

    摘要: Dissipative solitons are self-localized coherent structures arising from the balance between energy supply and dissipation. Besides stationary dissipative solitons, there are dynamical ones exhibiting oscillatory behavior, known as breathing dissipative solitons. Substantial interest in breathing dissipative solitons is driven by both their fundamental importance in nonlinear science and their practical applications, such as in spectroscopy. Yet, the observation of breathers has been mainly restricted to microresonator platforms. Here, we generate breathers in a mode-locked fiber laser. They exist in the laser cavity under the pump threshold of stationary mode locking. Using fast detection, we are able to observe the temporal and spectral evolutions of the breathers in real time. Breathing soliton molecules are also observed. Breathers introduce a new regime of mode locking into ultrafast lasers. Our findings may contribute to the design of advanced laser sources and open up new possibilities of generating breathers in various dissipative systems.

    关键词: spectroscopy,breathing solitons,mode-locked fiber lasers,dissipative solitons,nonlinear science

    更新于2025-09-12 10:27:22

  • Nonlinear Fiber Optics || Optical solitons

    摘要: A fascinating manifestation of the fiber nonlinearity occurs through optical solitons, formed as a result of the interplay between the dispersive and nonlinear effects. The word soliton refers to special kinds of wave packets that can propagate undistorted over long distances. Solitons have been discovered in many branches of physics. This chapter focuses on pulse propagation inside optical fibers in the regime in which both the group-velocity dispersion (GVD) and self-phase modulation (SPM) are equally important and must be considered simultaneously. It is organized as follows. Section 5.1 considers the phenomenon of modulation instability and shows that propagation of a continuous-wave (CW) beam inside optical fibers is inherently unstable and may convert the CW beam into pulse train under appropriate conditions. The inverse-scattering method is discussed in Section 5.2 together with the soliton solutions. The properties of the fundamental and higher-order solitons are also discussed in this section. Section 5.3 is devoted to other kinds of solitons, with emphasis on dark solitons. Section 5.4 considers the effects of external perturbations on solitons. Perturbations discussed include fiber losses, amplification of solitons, and noise introduced by optical amplifiers. Higher-order nonlinear effects such as self-steepening and intrapulse Raman scattering are the focus of Sections 5.5 and 5.6.

    关键词: modulation instability,optical amplifiers,dark solitons,intrapulse Raman scattering,inverse-scattering method,self-steepening,group-velocity dispersion,fiber nonlinearity,self-phase modulation,fiber losses,optical solitons

    更新于2025-09-12 10:27:22

  • Complexity in Biological and Physical Systems - Bifurcations, Solitons and Fractals || Self-Organization, Coherence and Turbulence in Laser Optics

    摘要: In the last decades, rapid progress in modern nonlinear science was marked by the development of the concept of dissipative soliton (DS). This concept is highly useful in many different fields of science ranging from field theory, optics, and condensed matter physics to biology, medicine, and even sociology. This chapter aims to present a DS appearance from random fluctuations, development and growth, the formation of the nontrivial internal structure of mature DS and its breakup, in other words, a full life cycle of DS as a self-organized object. Our extensive numerical simulations of the generalized cubic-quintic nonlinear Ginzburg-Landau equation, which models, in particular, dynamics of mode-locked fiber lasers, demonstrate a close analogy between the properties of DS and the general properties of turbulent and chaotic systems. In particular, we show a disintegration of DS into a noncoherent (or partially coherent) multisoliton complex. Thus, a DS can be interpreted as a complex of nonlinearly coupled coherent “internal modes” that allows developing the kinetic and thermodynamic theory of the nonequilibrious dissipative phenomena. Also, we demonstrate an improvement of DS integrity and, as a result, its disintegration suppression due to noninstantaneous nonlinearity caused by the stimulated Raman scattering. This effect leads to an appearance of a new coherent structure, namely, a dissipative Raman soliton.

    关键词: dissipative solitons,chaos in nonlinear optical systems,generalized cubic-quintic nonlinear Ginzburg-Landau equation,dissipative Raman soliton,optical turbulence

    更新于2025-09-12 10:27:22

  • [IEEE 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) - Munich, Germany (2019.6.23-2019.6.27)] 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) - Controllable Generation of Ultrashort Multi-Bound Solitons in a Mode-Locked Erbium-Doped Ring Laser with a Highly-Nonlinear Resonator

    摘要: Mode-locked (ML) ultrashort pulse (USP) fiber lasers can be treated as an ideal platform to expand future applications due to a complex nonlinear dynamics with a presence of a high value of a group velocity dispersion and a third-order dispersion in the laser resonator. Up to now a series of novel ML regimes have been investigated e.g. self-similar pulses, noise-like pulses, multi-bound solitons, and a soliton rain generation. Multi-bound solitons (MBS) generation regime, also known as soliton molecules, is of considerable interest in various fields of applications. For example, the investigation of a MBS generation is very attractive for increasing the data transfer capacity in telecommunications due to coding alphabet extension. The coding concept of MBS suggests a data stream using more than two symbols (2?N symbols, where N is the number of generated solitons in a bound state) [1]. And also, recent research shows that using ultrafast bursts of pulses can improve the quality of laser ablation for medical applications [2]. Moreover, MBS generation can be also used in a coherent pulse staking amplification scheme increasing an amplification efficiency along with a formation of high-energy solitons at a high-repetition-rate [3]. Previously we have obtained a generation of stable low-noise ultrashort multi-bound solitons in a passive mode-locked all-fiber erbium-doped ring laser with a highly-nonlinear resonator [4]. Fig. 1 shows autocorrelation traces and spectrums of MBS generation obtained by pump power variation at a wavelength of 980 nm. The output spectrums are evidently showing high-contrast intensity fringes (up to ~20 dB) and autocorrelation traces having symmetrical form without additional intensity peaks that indicates a stable and strong coherent connection between ultrashort pulses and fixed coherent phase difference in the temporal domain between several identical pulses. It is known that the highest energy of a fundamental soliton in a laser resonator with duration τp is limited by the soliton area theorem Es ~ |β2|/(γ · τp), where γ is the net nonlinear coefficient and β2 is the total cavity dispersion [1]. Soliton energy quantization results in pulse splitting at operation powers higher than the fundamental limit. Here we experimentally demonstrate the formation multi-bound solitons with the controllable number of bound states 7 < N < 17 by pump power variation in the range from ~160 mW to ~377 mW obtained in a highly-nonlinear fiber ring cavity.

    关键词: ultrashort pulse,laser ablation,fiber lasers,Mode-locked,coherent pulse staking amplification,soliton molecules,telecommunications,multi-bound solitons

    更新于2025-09-12 10:27:22

  • OPTICAL SOLITONS WITH DIFFERENTIAL GROUP DELAY FOR COUPLED KUNDU–ECKHAUS EQUATION USING EXTENDED SIMPLEST EQUATION APPROACH

    摘要: The extended simplest equation approach is implemented to secure soliton solutions, having differential group delay, for Kundu–Eckhaus equation in presence of four–wave mixing terms. The algorithm also lists additional solutions that emerge from the scheme as a byproduct.

    关键词: extended simplest equation.,Kundu–Eckhaus equation,solitons

    更新于2025-09-12 10:27:22

  • Formation of optical supramolecular structures in a fibre laser by tailoring long-range soliton interactions

    摘要: Self-assembly of fundamental elements through weak, long-range interactions plays a central role in both supramolecular DNA assembly and bottom-up synthesis of nanostructures. Optical solitons, analogous in many ways to particles, arise from the balance between nonlinearity and dispersion and have been studied in numerous optical systems. Although both short- and long-range interactions between optical solitons have attracted extensive interest for decades, stable soliton supramolecules, with multiple aspects of complexity and flexibility, have thus far escaped experimental observation due to the absence of techniques for enhancing and controlling the long-range inter-soliton forces. Here we report that long-range soliton interactions originating from optoacoustic effects and dispersive-wave radiations can be precisely tailored in a fibre laser cavity, enabling self-assembly of large numbers of optical solitons into highly-ordered supramolecular structures. We demonstrate several features of such optical structures, highlighting their potential applications in optical information storage and ultrafast laser-field manipulation.

    关键词: supramolecular structures,fibre laser,optoacoustic effects,optical solitons,long-range interactions

    更新于2025-09-12 10:27:22