修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

4 条数据
?? 中文(中国)
  • [IEEE 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Chicago, IL, USA (2019.6.16-2019.6.21)] 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Self-Aligned, Selective Area Poly-Si/SiO <sub/>2</sub> Passivated Contacts for Enhanced Photocurrent in Front/Back Solar Cells

    摘要: Spin circuits with four component voltages and currents have been developed and used in the past to analyze various structures, which include non-collinear ferromagnets. Recent demonstrations of large spin orbit torques in heavy metals like Pt, Ta, and W open up new possibilities in spintronic applications by providing an alternative way to write information into a magnet. Here, we extend the four component (one charge and three spins) conductance matrix to include materials with spin Hall effect based on the standard diffusion equation. Our proposed spin circuit successfully reproduces standard results like spin Hall effect (SHE), inverse spin Hall effect, and spin Hall magnetoresistance. This circuit representation also makes it straightforward to analyze new configurations. We present two examples, namely, 1) the possibility of spin injection using giant SHE (GSHE) materials into semiconductors without tunneling barriers, and 2) the effect of spin ground on one surface to enhance spin current injection from the opposite surface in a thin GSHE sample. Finally, we provide an elemental conductance matrix for a small cubic structure which can be used as a building block to analyze any arbitrarily shaped GSHE material.

    关键词: four component spin circuit,spin Hall magnetoresistance,Giant spin Hall effect,conductance matrix,inverse spin Hall effect,spin ground/sink,spin Hall effect

    更新于2025-09-23 15:19:57

  • [IEEE 2019 Photonics & Electromagnetics Research Symposium - Fall (PIERS - Fall) - Xiamen, China (2019.12.17-2019.12.20)] 2019 Photonics & Electromagnetics Research Symposium - Fall (PIERS - Fall) - FBG Sensors Network Embedded in Spectrum-sliced WDM-PON Transmission System Operating on Single Shared Broadband Light Source

    摘要: Spin circuits with four component voltages and currents have been developed and used in the past to analyze various structures, which include non-collinear ferromagnets. Recent demonstrations of large spin orbit torques in heavy metals like Pt, Ta, and W open up new possibilities in spintronic applications by providing an alternative way to write information into a magnet. Here, we extend the four component (one charge and three spins) conductance matrix to include materials with spin Hall effect based on the standard diffusion equation. Our proposed spin circuit successfully reproduces standard results like spin Hall effect (SHE), inverse spin Hall effect, and spin Hall magnetoresistance. This circuit representation also makes it straightforward to analyze new configurations. We present two examples, namely, 1) the possibility of spin injection using giant SHE (GSHE) materials into semiconductors without tunneling barriers, and 2) the effect of spin ground on one surface to enhance spin current injection from the opposite surface in a thin GSHE sample. Finally, we provide an elemental conductance matrix for a small cubic structure which can be used as a building block to analyze any arbitrarily shaped GSHE material.

    关键词: spin ground/sink,spin Hall magnetoresistance,conductance matrix,Giant spin Hall effect,inverse spin Hall effect,four component spin circuit,spin Hall effect

    更新于2025-09-19 17:13:59

  • [IEEE 2019 Photonics & Electromagnetics Research Symposium - Fall (PIERS - Fall) - Xiamen, China (2019.12.17-2019.12.20)] 2019 Photonics & Electromagnetics Research Symposium - Fall (PIERS - Fall) - Novel Approaches to Realize Plasmonic Intrinsic and Extrinsic Optical Fiber Sensors with High Sensitivity

    摘要: Spin circuits with four component voltages and currents have been developed and used in the past to analyze various structures, which include non-collinear ferromagnets. Recent demonstrations of large spin orbit torques in heavy metals like Pt, Ta, and W open up new possibilities in spintronic applications by providing an alternative way to write information into a magnet. Here, we extend the four component (one charge and three spins) conductance matrix to include materials with spin Hall effect based on the standard diffusion equation. Our proposed spin circuit successfully reproduces standard results like spin Hall effect (SHE), inverse spin Hall effect, and spin Hall magnetoresistance. This circuit representation also makes it straightforward to analyze new configurations. We present two examples, namely, 1) the possibility of spin injection using giant SHE (GSHE) materials into semiconductors without tunneling barriers, and 2) the effect of spin ground on one surface to enhance spin current injection from the opposite surface in a thin GSHE sample. Finally, we provide an elemental conductance matrix for a small cubic structure which can be used as a building block to analyze any arbitrarily shaped GSHE material.

    关键词: spin ground/sink,spin Hall magnetoresistance,conductance matrix,Giant spin Hall effect,inverse spin Hall effect,four component spin circuit,spin Hall effect

    更新于2025-09-19 17:13:59

  • Anomalous Hall-like transverse magnetoresistance in Au thin films on Y <sub/>3</sub> Fe <sub/>5</sub> O <sub/>12</sub>

    摘要: Anomalous Hall-like signals in platinum in contact with magnetic insulators are common observations that could be explained by either proximity magnetization or spin Hall magnetoresistance (SMR). In this work, longitudinal and transverse magnetoresistances are measured in a pure gold thin film on the ferrimagnetic insulator Y3Fe5O12 (Yttrium Iron Garnet, YIG). We show that both the longitudinal and transverse magnetoresistances have quantitatively consistent scaling in YIG/Au and in a YIG/Pt reference system when applying the SMR framework. No contribution of an anomalous Hall effect due to the magnetic proximity effect is evident.

    关键词: gold thin films,Anomalous Hall effect,Y3Fe5O12,proximity magnetization,spin Hall magnetoresistance

    更新于2025-09-09 09:28:46