- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Influence of ion species of AuSi liquid metal alloy source-focused ion beam on SiO2/Si nanopatterning
摘要: This work investigates the influence of the ion source (Au+ and Si+2 ions) of liquid metal alloy source-focused ion beam on the nanopattering. Two sets of SiO2/Si nanopatterns with a width of 450 nm on Silicon on insulator (SOI) substrate are fabricated by 30 keV Au+ and Si+2 ions, respectively. To study this effect, the sputtering yield is calculated using the volume loss method from atomic force microscopy (AFM) profiles obtained for each set. The results of the sputtering yield were compared with theoretical results calculated from Yamamura model for normal incidence for validation. The comparison showed a good agreement between the two results with a relative difference of about 5.3 % obtained using Si+2 ions.
关键词: Liquid metal alloy source-focused ion beam,Milling,Sputtering yield,Nanopattering
更新于2025-09-23 15:21:01
-
Sputtering yield measurements of laser ablated Mg-alloy correlated with surface, structural and mechanical modifications
摘要: Sputtering yield of laser ablated Mg-alloy has been measured by Quartz Crystal Microbalance at various fluences ranging from 11.6–44.2 J/cm2, under two different environments of Ar and O2. The sputtering yield initially increases from 14.58 × 1014 to 23.49 × 1014 and from 4.5 × 1014 to 22.60 × 1014 (atoms/pulse) by increasing fluence and then decreases upto a value of 19.78 × 1014 and 19.94 × 1014 (atoms/pulse) at the maximum fluence, under Ar and O2 environment respectively. Scanning Electron Microscope analysis reveals the formation of cones, cavities, droplets, ripples and island like structures on the irradiated Mg surface. Surface profilometry analysis reveals that the crater depth of laser irradiated Mg-alloy ranges from 188 to 209 μm. It initially increases by increasing laser fluence and afterwards, decreases at the maximum fluence. Energy Dispersive X-ray spectroscopy (EDX), X-Ray Diffraction analysis (XRD) and Ultraviolet-Visible (UV–vis) spectroscopy confirm the oxide formation for the laser treated target of Mg in O2. The Vickers Micro-hardness testing reveals that hardness of laser irradiated Mg-alloy is increased by increasing fluence. The surface structures, crater depth and hardness of laser irradiated Mg-alloy are strongly dependent upon laser fluence and are correlated with sputtering yield measurements.
关键词: UV–vis,EDX,XRD,Sputtering yield,Surface modifications,Crater depth,Mg-alloy AZ91D,Micro-hardness
更新于2025-09-11 14:15:04
-
Enhanced etching of tin-doped indium oxide due to surface modification by hydrogen ion injection
摘要: It is known that the etching yield (i.e., sputtering yield) of tin-doped indium oxide (ITO) by hydrocarbon ions (CHx+) is higher than its corresponding physical sputtering yield [H. Li et al., J. Vac. Sci. Technol. A 33, 060606 (2015)]. In this study, the effects of hydrogen in the incident hydrocarbon ion beam on the etching yield of ITO have been examined experimentally and theoretically with the use of a mass-selected ion beam system and by first-principles quantum mechanical (QM) simulation. As in the case of ZnO [H. Li et al., J. Vac. Sci. Technol. A 35, 05C303 (2017)], mass-selected ion beam experiments have shown that the physical sputtering yield of ITO by chemically inert Ne ions increases after a pretreatment of the ITO film by energetic hydrogen ion injection. First-principles QM simulation of the interaction of In2O3 with hydrogen atoms shows that hydrogen atoms embedded in In2O3 readily form hydroxyl (OH) groups and weaken or break In–O bonds around the hydrogen atoms, making the In2O3 film less resistant to physical sputtering. This is consistent with experimental observation of the enhanced etching yields of ITO by CHx+ ions, considering the fact that hydrogen atoms of the incident CHx+ ions are embedded into ITO during the etching process.
关键词: quantum mechanical simulation,sputtering yield,tin-doped indium oxide,hydrogen ion injection,physical sputtering,ITO,etching yield,In2O3,hydrocarbon ions,hydroxyl groups
更新于2025-09-04 15:30:14