修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

51 条数据
?? 中文(中国)
  • Well‐Defined Cu <sub/>2</sub> O/Cu <sub/>3</sub> (BTC) <sub/>2</sub> Sponge Architecture as Efficient Phenolics Scavenger: Synchronous Etching and Reduction of MOFs in confined‐pH NH <sub/>3</sub> ?H <sub/>2</sub> O

    摘要: Fabrication of low-dimensional nano-MOFs as well as nanoparticles/metal-organic frameworks (MOFs) hybrids has sparked new scientific interests but remains a challenging task. Taking Cu3(BTC)2 as a proof of concept, it is demonstrated thats NH3?H2O solution of a confined pH value can readily shape the bulk Cu3(BTC)2 into nanoscale Cu3(BTC)2, beyond the need to control the crystal growth kinetics of MOFs. Adjusting the pH of NH3?H2O within a much small range (10–11) allows fine tuning over the size and shape of nanoscale Cu3(BTC)2. Particularly at pH = 11, NH3?H2O exhibits weak reducibility that triggers a reduction of part of Cu3(BTC)2 into Cu2O, while shaping the other into Cu3(BTC)2 nanowires. Benefiting from the coincidence of reduction and etching effects, the newly generated Cu2O dots can in situ anchor onto adjacent Cu3(BTC)2 nanowires at highly dispersive state, forming a well-defined sponge-like architecture built of Cu2O dots and nano-Cu3(BTC)2. The CuOx derived from annealing of the Cu2O dots/nano-Cu3(BTC)2 hybrid preserves the sophisticated sponge architecture and high porosity, and exhibits promising applications in phenol scavenging, with efficiency outperforming its counterparts and many other Cu-based catalysts reported in literature. It is anticipated that the findings here pave the way for the rational design of intricate nano-MOFs in a more efficient way.

    关键词: nanoparticles/MOF,etching and reduction,sponge architecture,synergistic effect,low-dimensional MOFs

    更新于2025-11-14 17:03:37

  • Synergistic effects and kinetics of rGO-modified TiO2 nanocomposite on adsorption and photocatalytic degradation of humic acid

    摘要: Graphene oxide was prepared using the modified Hummers method and reduced graphene oxide (rGO) - titanium dioxide (TiO2) nanocomposite was synthesised using the one-step hydrothermal treatment. The synergistic effects on adsorption and photocatalytic properties of the rGO-TiO2 nanocomposite for the humic acid removal were systematically investigated. The results of X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and Raman and infrared (IR) spectroscopy indicate that GO was partially reduced to reduced graphene oxide (rGO) in the hydrothermal synthesis process and anatase TiO2 nanoparticles uniformly grew on the surface of rGO. The photoelectron and photohole generated under visible light irradiation were effectively separated on the surface of rGO-TiO2. The rGO-TiO2 nanocomposite exhibited higher photocatalytic activity as a result of the synergistic effects of surface functional groups for adsorption and the excellent conductivity for photocatalytic reaction. The effect of rGO-TiO2 nanocomposite dosage, light intensity and system temperature on the removal of humic acid solution was investigated. The results show that the removal efficiency of humic acid increased with system temperature and light intensity. When the dosage of rGO-TiO2 nanocomposite was 1.2 g/L, the temperature, the light intensity and the pH of this system was 303 K, 4.37 Wm?2 and 7, respectively, the removal efficiency of humic acid reached 88.7% under visible light irradiation.

    关键词: Synergistic effects,rGO,Humic acid,TiO2,Adsorption and photocatalysis

    更新于2025-11-14 17:03:37

  • Tetramodal Imaging and Synergistic Cancer Radio-Chemotherapy Enabled by Multiple Component-Encapsulated Zeolitic Imidazolate Frameworks

    摘要: The abundant species of functional nanomaterials have attracted tremendous interests as components to construct multifunctional composites for cancer theranostics. However, their distinct chemical properties substantially require a specific strategy to integrate them in harmony. Here, we report the preparation of a distinctive multifunctional composite by encapsulating small-sized semiconducting copper bismuth sulfide (CBS) nanoparticles and rare-earth down-conversion (DC) nanoparticles in larger-sized zeolitic imidazolate framework-8 (ZIF8) nanoparticles, followed by loading an anticancer drug, doxorubicin (DOX). Such composites can be used for tetramodal imaging, including traditional computed tomography and magnetic resonance imaging and, recently, for photoacoustic imaging and fluorescence imaging. With a pH-responsive release of the encapsulated components, synergistic radio-chemotherapy with a high (87.6%) tumor inhibition efficiency is achieved at moderate doses of the CBS&DC-ZIF8@DOX composite with X-ray irradiation. This promising strategy highlights the extending capacity of zeolitic imidazolate frameworks to encapsulate multiple distinct components for enhanced cancer imaging and therapy.

    关键词: multifunctional,zeolitic imidazolate frameworks,tetramodal imaging,multiple encapsulation,synergistic radio-chemotherapy

    更新于2025-11-14 15:24:45

  • A Low-Cost Flash Photographic System for Visualization of Droplets in Drop-on-Demand Inkjet

    摘要: Hepatocellular carcinoma (HCC) is one of the most common and deadly human cancers. The 5-year survival rate is very low. Unfortunately, there are few efficacious therapeutic options. Until recently, Sorafenib has been the only available systemic drug for advanced HCC. However, it has very limited survival benefits, and new therapies are urgently needed. In this study, we investigated the anti-HCC activity of carfilzomib, a second-generation, irreversible proteasome inhibitor, as a single agent and in combination with sorafenib. In vitro, we found that carfilzomib has moderate anticancer activity toward liver cancer cells, but strongly enhances the ability of sorafenib to suppress HCC cell growth, proliferation, migration, invasion, and survival. Remarkably, the drug combination exhibits even more potent antitumor activity when tested in animal tumor models. Mechanistically, the combined treatment activates caspase-dependent and endoplasmic reticulum stress/CHOP-mediated apoptotic pathways, and suppresses epithelial–mesenchymal transition. In conclusion, our results demonstrate that the combination of carfilzomib and sorafenib has synergistic antitumor activities against HCC, providing a potential therapeutic strategy to improve the mortality and morbidity of HCC patients.

    关键词: Hepatocellular Carcinoma,Proteasome Inhibitor,ER Stress,Apoptosis,Sorafenib,EMT,Carfilzomib,Synergistic Inhibition

    更新于2025-09-23 15:23:52

  • On-demand CO release for amplification of chemotherapy by MOF functionalized magnetic carbon nanoparticles with NIR irradiation

    摘要: Carbon monoxide (CO) gas therapy combined with chemotherapy and photothermal therapy (PTT) is a promising treatment mode for malignant tumor. Herein, we firstly reported doxorubicin (DOX) loaded Mn carbonyl modified Fe (III)-based nanoMOFs (MIL-100) coated PEGylated magnetic carbon nanoparticles (denoted as MCM@PEG-CO-DOX NPs) as theranostics nanoplatforms for near-infrared (NIR)-responded CO-DOX combination therapy. MIL-100 as a good nanocarrier of DOX with high loading capacity can also chelate the Mn carbonyl after a smart modification. Meanwhile, magnetic carbon core possessed photothermal effect, which can convert the NIR light to heat by an 808 nm laser irradiation, resulting in the on-demand release of CO and DOX. As a result, combining with PTT, MCM@PEG-CO-DOX NPs killed tumor efficiently. Moreover, our synthesized MCM@PEG-CO-DOX NPs were capable of realizing tumor dual-mode imaging including magnetic resonance imaging (MRI) and photoacoustic imaging (PAI).

    关键词: synergistic treatment,dual-mode imaging,MOFs,CO gas therapy,carbon nanoparticles

    更新于2025-09-23 15:23:52

  • Two-dimensional amorphous heterostructures of Ag/a-WO3- for high-efficiency photocatalytic performance

    摘要: Synergistic photocatalysis is an important concept for designing the high-efficiency catalysis for fundamental research and technical applications. In this study a well-defined synergistic photocatalysis system is realized by the 2D amorphous heterostructures (2DAHs) Ag/a-WO3-x, which are constructed by Ag nanoparticles on 2D amorphous tungsten oxide (a-WO3-x) fabricated via supercritical CO2 method. We demonstrate theoretically that the oxygen evolution reactions (OER), characterized by photocurrent response, have been dramatically improved in Ag/a-WO3-x than those of both single a-WO3-x and Ag/WO3 systems. Such an enhanced photoelectrochemical performance attributes to the superposition effect of amorphous effect catalysis and local surface plasmon resonances (LSPR) catalysis. More interestingly, the ab initio density-functional theory calculations reveal that the amorphous effect catalysis ascribes to the unique d-d tail states coupling of both Ag and W atoms in the 2DAHs. Overall, our findings not only propose the prototype of synergistic photocatalysis, but also provide a new methodology to the design of novel catalyst.

    关键词: 2D amorphous tungsten oxide,amorphous effect catalysis,synergistic photocatalysis,d-d tail states coupling,2D amorphous heterostructures Ag/a-WO3-x

    更新于2025-09-23 15:23:52

  • Dual-responsive molybdenum disulfide/copper sulfide-based delivery systems for enhanced chemo-photothermal therapy

    摘要: Molybdenum disul?de (MoS2)-based drug delivery systems have shown considerable potential in cancer nanomedicines. In this work, a multifunctional nanoplatform comprising MoS2 nanosheets decorated with copper sul?de (CuS) and further functionalized with polyethylene glycol (PEG) is reported. The resultant material has a particle size of approximately 115 nm, and can be loaded with doxorubicin (DOX) to a loading capacity of 162.3 mg DOX per g of carrier. Drug release is triggered by two stimuli (near infrared (NIR) irradiation and pH), and the carrier is shown to have excellent colloidal stability. The presence of both MoS2 and CuS leads to very high photothermal conversion ef?ciency (higher than with MoS2 alone). In vitro experiments revealed that the blank CuS-MoS2-SH-PEG carrier is biocompatible, but that the synergistic application of chemo-photothermal therapy (in the form of CuS-MoS2-SH-PEG loaded with DOX and NIR irradiation) led to greater cell death than either chemotherapy (CuS-MoS2-SH-PEG(DOX) but no NIR) or photothermal therapy (CuS-MoS2-SH-PEG with NIR). A cellular uptake study demonstrated that the nanoplatform can ef?ciently enter tumor cells, and that uptake is enhanced when NIR is applied. Overall, the functionalized MoS2 material developed in this work exhibits great potential as an ef?cient system for dual responsive drug delivery and synergistic chemo-photothermal therapy. The route employed in our work thus provides a strategy to enhance photothermal ef?cacy for transition metal dichalcogenide drug delivery systems.

    关键词: Chemotherapy,Drug delivery,MoS2,Photothermal therapy,Synergistic therapy

    更新于2025-09-23 15:23:52

  • Novel RGO and concave cube Cu <sub/>2</sub> O co-modified BiVO <sub/>4</sub> nanosheets with enhanced photocatalytic and surface adsorption performances of tetracycline

    摘要: A novel ternary Cu2O/BiVO4/RGO photocatalyst is successfully constructed by hydrothermal and evaporation-induced method, and it exhibits superior photocatalytic performance for degradation tetracycline (TC). Meanwhile, the visible light absorption range of composite photocatalyst is effectively broadened by the formation of heterojunction with narrow band gap semiconductor Cu2O. And the separation efficiency of the photogenerated electron-hole pairs is significantly enhanced by the synergistic effect of Cu2O and RGO. More importantly, the adsorption of TC by ternary Cu2O/BiVO4/RGO possesses high adsorption capacity, which is 23.73 times higher than that of pure BiVO4. Additionally, the possible reaction mechanism is clearly revealed by radical trapping experiment, electron spin-resonance (ESR) spectroscopy. This work provides a new insight to design a photocatalyst with excellent adsorption to remove organic contaminants in water.

    关键词: RGO,Adsorption,synergistic effect,BiVO4,Cu2O,Tetracycline

    更新于2025-09-23 15:22:29

  • Cobalt/Molybdenum Phosphides and Oxides Heterostructures Encapsulated in N-doped Carbon Nanocomposite for Overall Water Splitting in Alkaline Media

    摘要: The development of designing and searching inexpensive electrocatalysts with highly activity for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is significant to enable water splitting as a future renewable energy source. Herein, we synthesis a new CoP(MoP)-CoMoO3 heterostructure coated by N-doped carbon shell (CoP(MoP)-CoMoO3@CN) via thermal decomposing and phosphatizing the CoMoO4?0.9H2O nanowires encapsulated in N-doped carbon. At 10 mA?cm?2, this CoP(MoP)-CoMoO3@CN nanocomposite exhibits superior electrocatalytic activity of low overpotentials of 296 mV for OER and 198 mV for HER in alkaline media. More importantly, we achieve a current density of 10 mA?cm?2 at 1.55 V by using this CoP(MoP)-CoMoO3@CN as both cathode and anode for overall water splitting. This promising performance could be due to the high activity of CoP(MoP)-CoMoO3 and the good conductivity of external mesoporous N-carbon shell, which makes the CoP(MoP)-CoMoO3@CN nanowires as a competitive alternative to noble metal based catalysts for water splitting.

    关键词: metal phosphides,overall water splitting,synergistic effects,nanowires,N-doped Carbon

    更新于2025-09-23 15:22:29

  • Recent Development of Photocatalysts Containing Carbon Species: A Review

    摘要: Undoubtedly, carbon-based (nano)composites can be promising photocatalysts with improved photocatalytic activity due to the coupling effect from the incorporation of carbon species. In this mini-review, we focus on the recent development of photocatalysts based on carbon-based (nano)composites. TiO2 is well-known as a typical photocatalyst. Special attention is paid to the various types of carbon–TiO2 composites such as C-doped TiO2, N–C-doped TiO2, metal–C-doped TiO2, and other co-doped C/TiO2 composites. Various synthetic strategies including the solvothermal/hydrothermal method, sol–gel method, and template-directed method are reviewed for the preparation of carbon-based TiO2 composites. C/graphitic carbon nitride (g-C3N4) composites and ternary C-doped composites are also summarized and ascribed to the unique electronic structure of g-C3N4 and the synergistic effect of the ternary interfaces, respectively. In the end, we put forward the future perspective of the photocatalysts containing carbon species based on our knowledge.

    关键词: (nano)composites,synergistic effect,g-C3N4,C-doped,photocatalysts,TiO2

    更新于2025-09-23 15:22:29