修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

1 条数据
?? 中文(中国)
  • Achieving high-performance non-halogenated nonfullerene acceptor-based organic solar cells with 13.7% efficiency <i>via</i> a synergistic strategy of an indacenodithieno[3,2- <i>b</i> ]selenophene core unit and non-halogenated thiophene-based terminal group

    摘要: An outmost selenophene-functionalized electron-rich central core (indacenodithieno[3,2-b]selenophene) and a new non-halogenated A–D–A architecture non-fullerene small molecular acceptor (NF-SMA) (TSeTIC) based on indacenodithieno[3,2-b]selenophene as the central unit and thiophene-fused IC as a terminal group was designed and synthesized for high performance organic solar cells. In contrast to the similar NF-SMA (TTTIC) with an indacenodithieno[3,2-b]thiophene unit, TSeTIC exhibited a stronger and red-shifted absorption spectrum, higher highest occupied molecular orbital (HOMO) energy level, and enhanced electron mobility in neat thin films. Furthermore, a TSeTIC/PM6-based device presented higher hole/electron mobility, better phase separation features with favorable morphology, and higher charge dissociation and collection efficiency than a TTTIC/PM6-based device, resulting in remarkably improved Jsc and FF without sacrificing the Voc. Therefore, compared to the best PCE of 12.05% with an energy loss (Eloss) of 0.64 eV for the PM6/TTTIC device, the optimized PM6/TSeTIC device yields a significantly higher PCE of 13.71% with a higher FF of 75.9% and decreased Eloss of 0.60 eV. It is worth noting that the excellent PCE of 13.71% is the highest recorded for A–D–A structural NF-SMAs with thiophene-containing terminal groups for binary organic solar cells. These results demonstrate that the synergistic strategy of using an indacenodithieno[3,2-b]selenophene core unit and thiophene-containing IC end group is a promising avenue to enhance the PCE of non-halogenated NF-SMAs with high Voc and FF as well as low Eloss.

    关键词: indacenodithieno[3,2-b]selenophene,non-halogenated nonfullerene acceptor,organic solar cells,synergistic strategy,thiophene-based terminal group

    更新于2025-09-16 10:30:52