- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
A multi-method approach to radial-velocity measurement for single-object spectra
摘要: Context. The derivation of radial velocities from large numbers of spectra that typically result from survey work, requires automation. However, except for the classical cases of slowly rotating late-type spectra, existing methods of measuring Doppler shifts require fine-tuning to avoid a loss of accuracy due to the idiosyncrasies of individual spectra. The radial velocity spectrometer (RVS) on the Gaia mission, which will start operating very soon, prompted a new attempt at creating a measurement pipeline to handle a wide variety of spectral types. Aims. The present paper describes the theoretical background on which this software is based. However, apart from the assumption that only synthetic templates are used, we do not rely on any of the characteristics of this instrument, so our results should be relevant for most telescope-detector combinations. Methods. We propose an approach based on the simultaneous use of several alternative measurement methods, each having its own merits and drawbacks, and conveying the spectral information in a different way, leading to different values for the measurement. A comparison or a combination of the various results either leads to a 'best estimate' or indicates to the user that the observed spectrum is problematic and should be analysed manually. Results. We selected three methods and analysed the relationships and differences between them from a unified point of view; with each method an appropriate estimator for the individual random error is chosen. We also develop a procedure for tackling the problem of template mismatch in a systematic way. Furthermore, we propose several tests for studying and comparing the performance of the various methods as a function of the atmospheric parameters of the observed objects. Finally, we describe a procedure for obtaining a knowledge-based combination of the various Doppler-shift measurements.
关键词: techniques: radial velocities,surveys,stars: kinematics and dynamics,methods: data analysis,techniques: spectroscopic
更新于2025-09-23 15:23:52
-
SOPHIE velocimetry of <i>Kepler</i> transit candidates
摘要: Kepler-419 is a planetary system discovered by the Kepler photometry which is known to harbour two massive giant planets: an inner 3 MJ transiting planet with a 69.8-day period, highly eccentric orbit, and an outer 7.5 MJ non-transiting planet predicted from the transit-timing variations (TTVs) of the inner planet b to have a 675-day period, moderately eccentric orbit. Here we present new radial velocity (RV) measurements secured over more than two years with the SOPHIE spectrograph, where both planets are clearly detected. The RV data is modelled together with the Kepler photometry using a photodynamical model. The inclusion of velocity information breaks the MR?3 degeneracy inherent in timing data alone, allowing us to measure the absolute stellar and planetary radii and masses. With uncertainties of 12 and 13% for the stellar and inner planet radii, and 35, 24, and 35% for the masses of the star, planet b, and planet c, respectively, these measurements are the most precise to date for a single host star system using this technique. The transiting planet mass is determined at better precision than the star mass. This shows that modelling the radial velocities and the light curve together in systems of dynamically interacting planets provides a way of characterising both the star and the planets without being limited by knowledge of the star. On the other hand, the period ratio and eccentricities place the Kepler-419 system in a sweet spot; had around twice as many transits been observed, the mass of the transiting planet could have been measured using its own TTVs. Finally, the origin of the Kepler-419 system is discussed. We show that the system is near a coplanar high-eccentricity secular fixed point, related to the alignment of the orbits, which has prevented the inner orbit from circularising. For most other relative apsidal orientations, planet b’s orbit would be circular with a semi-major axis of 0.03 au. This suggests a mechanism for forming hot Jupiters in multiplanetary systems without the need of high mutual inclinations.
关键词: planetary systems,techniques: photometric,techniques: radial velocities
更新于2025-09-23 15:22:29
-
Measuring precise radial velocities on individual spectral lines
摘要: Context. Stellar activity is the main limitation to the detection of an Earth-twin using the radial-velocity (RV) technique. Despite many efforts in trying to mitigate the effect of stellar activity using empirical and statistical techniques, it seems that we are facing an obstacle that will be extremely difficult to overcome using current techniques. Aims. In this paper, we investigate a novel approach to derive precise RVs considering the wealth of information present in high-resolution spectra. Methods. This new method consists of building a master spectrum from all available observations and measure the RVs of each individual spectral line in a spectrum relative to this master. When analysing several spectra, the final product of this approach is the RVs of each individual line as a function of time. Results. We demonstrate on three stars intensively observed with HARPS that our new method gives RVs that are extremely similar to the one derived from the HARPS data reduction software. Our new approach to derive RVs demonstrates that the non-stability of daily HARPS wavelength solution induces night-to-night RV offsets with an standard deviation of 0.4 m s?1, and we propose a solution to correct for this systematic. Finally, and this is probably the most astrophysically relevant result of this paper, we demonstrate that some spectral lines are strongly affected by stellar activity while others are not. By measuring the RVs on two carefully selected subsample of spectral lines, we demonstrate that we can boost by a factor of two or mitigate by a factor of 1.6 the red noise induced by stellar activity in the 2010 RV measurements of α Cen B. Conclusions. By measuring the RVs of each spectral line, we are able to reach the same RV precision as other approved techniques. In addition, this new approach allows us to demonstrate that each spectral line is differently affected by stellar activity. Preliminary results show that studying in details the behaviour of each spectral line is probably the key to overcome the obstacle of stellar activity.
关键词: stars: individual: HD 128621,stars: activity,stars: individual: HD 10700,stars: individual: HD 10180,techniques: radial velocities,techniques: spectroscopic
更新于2025-09-23 15:22:29
-
The CARMENES search for exoplanets around M dwarfs
摘要: Context. Previous simulations predicted the activity-induced radial-velocity (RV) variations of M dwarfs to range from ~1 cm s?1 to ~1 km s?1, depending on various stellar and activity parameters. Aims. We investigate the observed relations between RVs, stellar activity, and stellar parameters of M dwarfs by analyzing CARMENES high-resolution visual-channel spectra (0.5–1 μm), which were taken within the CARMENES RV planet survey during its ?rst 20 months of operation. Methods. During this time, 287 of the CARMENES-sample stars were observed at least ?ve times. From each spectrum we derived a relative RV and a measure of chromospheric Hα emission. In addition, we estimated the chromatic index (CRX) of each spectrum, which is a measure of the RV wavelength dependence. Results. Despite having a median number of only 11 measurements per star, we show that the RV variations of the stars with RV scatter of >10 m s?1 and a projected rotation velocity v sin i > 2 km s?1 are caused mainly by activity. We name these stars “active RV-loud stars” and ?nd their occurrence to increase with spectral type: from ~3% for early-type M dwarfs (M0.0–2.5 V) through ~30% for mid-type M dwarfs (M3.0–5.5 V) to >50% for late-type M dwarfs (M6.0–9.0 V). Their RV-scatter amplitude is found to be correlated mainly with v sin i. For about half of the stars, we also ?nd a linear RV–CRX anticorrelation, which indicates that their activity-induced RV scatter is lower at longer wavelengths. For most of them we can exclude a linear correlation between RV and Hα emission. Conclusions. Our results are in agreement with simulated activity-induced RV variations in M dwarfs. The RV variations of most active RV-loud M dwarfs are likely to be caused by dark spots on their surfaces, which move in and out of view as the stars rotate.
关键词: techniques: radial velocities,stars: activity,stars: rotation,stars: late-type
更新于2025-09-23 15:22:29
-
Radial velocity follow-up of GJ1132 with HARPS
摘要: The source GJ1132 is a nearby red dwarf known to host a transiting Earth-size planet. After its initial detection, we pursued an intense follow-up with the HARPS velocimeter. We now confirm the detection of GJ1132b with radial velocities alone. We refined its orbital parameters, and in particular, its mass (mb = 1.66 ± 0.23 M⊕), density (ρb = 6.3 ± 1.3 g cm?3), and eccentricity (eb < 0.22; 95%). We also detected at least one more planet in the system. GJ1132c is a super-Earth with period Pc = 8.93 ± 0.01 days and minimum mass mc sin ic = 2.64 ± 0.44 M⊕. Receiving about 1.9 times more flux than Earth in our solar system, its equilibrium temperature is that of a temperate planet (Teq = 230?300 K for albedos A = 0.75 ? 0.00), which places GJ1132c near the inner edge of the so-called habitable zone. Despite an a priori favorable orientation for the system, Spitzer observations reject most transit configurations, leaving a posterior probability <1% that GJ1132c transits. GJ1132(d) is a third signal with period Pd = 177 ± 5 days attributed to either a planet candidate with minimum mass md sin id = 8.4+1.7?2.5 M⊕ or stellar activity. Its Doppler signal is the most powerful in our HARPS time series but appears on a timescale where either the stellar rotation or a magnetic cycle are viable alternatives to the planet hypothesis. On the one hand, the period is different than that measured for the stellar rotation (~125 days), and a Bayesian statistical analysis we performed with a Markov chain Monte Carlo and Gaussian processes demonstrates that the signal is better described by a Keplerian function than by correlated noise. On the other hand, periodograms of spectral indices sensitive to stellar activity show power excess at similar periods to that of this third signal, and radial velocity shifts induced by stellar activity can also match a Keplerian function. We, therefore, prefer to leave the status of GJ1132(d) undecided.
关键词: techniques: radial velocities,planetary systems,stars: late-type
更新于2025-09-23 15:22:29
-
The GAPS Programme with HARPS-N at TNG
摘要: Context. Statistical studies of exoplanets have shown that giant planets are more commonly hosted by metal-rich dwarf stars than low-metallicity stars, while no such correlation is evident for lower mass planets. The search for giant planets around metal-poor stars and the estimate of their occurrence fp is an important element in providing support to models of planet formation. Aims. We present results from the HARPS-N search for giant planets orbiting metal-poor ([Fe/H] ≤ -0.5 dex) stars in the northern hemisphere, complementing a previous HARPS survey on southern stars in order to update the estimate of fp. Methods. High-precision HARPS-N observations of 42 metal-poor stars were used to search for planetary signals to be fitted using differential evolution Markov chain Monte Carlo single-Keplerian models. We then joined our detections to the results of the previous HARPS survey on 88 metal-poor stars to provide a preliminary estimate of the two-hemisphere fp. Results. We report the detection of two new giant planets around HD 220197 and HD 233832. The first companion has Msin i = 0.20+0.07-0.04 MJup and an orbital period of 1728+162-80 days, and for the second companion, we find two solutions of equal statistical weight with periods of 2058+47-40 and 4047+91-117 days and minimum masses of 1.78+0.08-0.06 and 2.72+0.23-0.23 MJup, respectively. Joining our two detections with the three from the southern survey, we obtain a preliminary and conservative estimate of the global frequency of fp = 3.84+2.45-1.06% for giant planets around metal-poor stars. Conclusions. The two new giant planets orbit dwarf stars at the metal-rich end of the HARPS-N metal-poor sample. This corroborates previous results that suggested that giant planet frequency is still a rising function of the host star [Fe/H]. We also note that all detections in the overall sample are giant long-period planets.
关键词: stars: individual: HD 220197,techniques: radial velocities,stars: abundances,stars: individual: HD 233832,methods: data analysis,planetary systems
更新于2025-09-23 15:22:29
-
The GAPS Programme with HARPS-N at TNG
摘要: Context. Identification of planetary companions of giant stars is made difficult because of the astrophysical noise, that may produce radial velocity variations similar to those induced by a companion. On the other hand any stellar signal is wavelength dependent, while signals due to a companion are achromatic. Aims. Our goal is to determine the origin of the Doppler periodic variations observed in the thick disk K giant star TYC 4282-605-1 by HARPS-N at the Telescopio Nazionale Galileo (TNG) and verify if they can be due to the presence of a substellar companion. Methods. Several methods have been used to exclude the stellar origin of the observed signal including detailed analysis of activity indicators and bisector and the analysis of the photometric light curve. Finally we have conducted an observational campaign to monitor the near infrared (NIR) radial velocity with GIANO at the TNG in order to verify whether the NIR amplitude variations are comparable with those observed in the visible. Results. Both optical and NIR radial velocities show consistent variations with a period at 101 days and similar amplitude, pointing to the presence of a companion orbiting the target. The main orbital properties obtained for our giant star with a derived mass of M = 0.97 ± 0.03 M⊙ are MP sin i = 10.78 ± 0.12 MJ; P = 101.54 ± 0.05 days; e = 0.28 ± 0.01 and a = 0.422 ± 0.009 AU. The chemical analysis shows a significant enrichment in the abundance of Na i, Mg i, Al i and Si i while the rest of analyzed elements are consistent with the solar value demonstrating that the chemical composition corresponds with an old K giant (age = 10.1 Gyr) belonging to local thick disk. Conclusions. We conclude that the substellar companion hypothesis for this K giant is the best explanation for the observed periodic radial velocity variation. This study also shows the high potential of multi-wavelength radial velocity observations for the validation of planet candidates.
关键词: planetary systems,infrared: stars,techniques: radial velocities,stars: individual: TYC 4282-605-1
更新于2025-09-23 15:21:01
-
Echelle++, a Fast Generic Spectrum Simulator
摘要: We present the software package, Echelle++, an open-source C++ code to simulate realistic raw spectra based on the Zemax model of any spectrograph, with a particular emphasis on cross-dispersed échelle spectrographs. Echelle++ generates realistic spectra of astronomical and calibration sources, with accurate representation of optical aberrations, the shape of the point-spread function, detector characteristics, and photon noise. It produces high-?delity spectra fast, a very important feature when testing data reduction pipelines with a large set of different input spectra, when making critical choices about order spacing in the design phase of the instrument, or while aligning the spectrograph during construction. Echelle++ also works with low-resolution, low signal-to-noise, multi-object, IFU, or long-slit spectra, for simulating a wide array of spectrographs. We chose to initially generate our own spectrograph model from the optical prescription in Zemax. Echelle++ can then be used independently, without access to commercial ray tracing software.
关键词: methods: numerical,techniques: radial velocities,instrumentation: spectrographs
更新于2025-09-23 15:19:57
-
Using the Sun to estimate Earth-like planet detection capabilities
摘要: Context. Stellar variability, at a variety of timescales, can strongly affect the ability to detect exoplanets, in particular when using radial velocity (RV) techniques. Accurately characterized solar variations are precious in this context to study the impact of stellar variations on planet detectability. Here we focus on the impact of small timescale variability. Aims. The objective of this paper is to model realistic RV time series due to granulation and supergranulation and to study in greater detail the impact of granulation and supergranulation on RV times series in the solar case. Methods. We have simulated a collection of granules and supergranules evolving in time to reproduce solar photometric and RV time series. Synthetic time series are built over the full hemisphere over one solar cycle. Results. We obtain intensity and RV rms due to solar granulation of respectively 0.8 m/s and 67 ppm, with a strong variability at timescales up to more than 1 h. The rms RV due to supergranulation is between 0.28 and 1.12 m/s. Conclusions. To minimize the effect of granulation, the best strategy is to split the observing time during the night into several periods instead of observing over a consecutive duration. However, the best strategy depends on the precise nature of the signal. The granulation RV remains large after even an hour of smoothing (about 0.4 m/s) while the supergranulation signal cannot be significantly reduced on such timescales: a reduction of a factor 2 in rms RV can for example be obtained over 7 nights (with 26 min/night). The activity RV variability dominates at larger timescales. Detection limits can easily be as high as 1 MEarth or above for periods of tens or hundreds of days. The impact on detection limits is therefore important and may prevent the detection of 1 MEarth planets for long orbital periods, while the impact is much smaller at small orbital periods. These results do not take the presence of pulsations into account.
关键词: Sun: granulation,Sun: activity,stars: solar-type,planetary systems,techniques: radial velocities,stars: activity
更新于2025-09-23 15:19:57
-
The HARPS search for southern extra-solar planets
摘要: Context. We present radial-velocity measurements of eight stars observed with the HARPS Echelle spectrograph mounted on the 3.6-m telescope in La Silla (ESO, Chile). Data span more than ten years and highlight the long-term stability of the instrument. Aims. We search for potential planets orbiting HD 20003, HD 20781, HD 21693, HD 31527, HD 45184, HD 51608, HD 134060 and HD 136352 to increase the number of known planetary systems and thus better constrain exoplanet statistics. Methods. After a preliminary phase looking for signals using generalized Lomb-Scargle periodograms, we perform a careful analysis of all signals to separate bona-fide planets from signals induced by stellar activity and instrumental systematics. We finally secure the detection of all planets using the efficient MCMC available on the Data and Analysis Center for Exoplanets (DACE web-platform), using model comparison whenever necessary. Results. In total, we report the detection of twenty new super-Earth to Neptune-mass planets, with minimum masses ranging from 2 to 30 MEarth and periods ranging from 3 to 1300 days, in multiple systems with two to four planets. Adding CORALIE and HARPS measurements of HD20782 to the already published data, we also improve the characterization of the extremely eccentric Jupiter orbiting this visual companion of HD 20781.
关键词: techniques: radial velocities,stars: general,methods: data analysis,techniques: spectroscopic,planetary systems
更新于2025-09-19 17:15:36