修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

过滤筛选

出版时间
  • 2019
  • 2018
  • 2015
研究主题
  • low-temperature electronics
  • junction field-effect transistors
  • Bessel Function
  • Coupling Coefficient
  • Fusion temperature and Elongation speed
  • Infrared Thermography
  • Statistical Analysis
  • Mean Temperature Difference
  • Surface temperature distribution
  • Diabetic Foot Complications
应用领域
  • Optoelectronic Information Science and Engineering
  • Electronic Science and Technology
  • Physics
机构单位
  • Don State Technical University
  • China Jiliang University
  • UIN Suska Riau
  • BMS College of Engineering
  • Dalhousie University
  • Majmaah University
  • Soochow University
  • University of Riau
  • Karnataka Institute of Endocrinology and Research (KIER)
  • Southern Federal University
1238 条数据
?? 中文(中国)
  • A high-performance room temperature methanol gas sensor based on alpha-iron oxide/polyaniline/PbS quantum dots nanofilm

    摘要: A high-performance room temperature methanol gas sensor based on alpha-iron oxide/polyaniline/lead sulfide quantum dots (α-Fe2O3/PANI/PbS QDs) nanofilm was demonstrated in this paper, among which the α-Fe2O3 was an urchin-shaped hollow microsphere. The sensing film was fabricated on an epoxy substrate with interdigital electrodes via successive ionic layer adsorption and reaction technique. The prepared α-Fe2O3/PANI/PbS QDs nanocomposite was examined by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, scanning election microscopy and Fourier transform infrared spectrum. The methanol sensing performances of the α-Fe2O3/PANI/PbS QDs film sensor were investigated against methanol from 10 to 100 ppm at room temperature. The experimental results indicated that the methanol sensor in this work had an excellent response, outstanding selectivity and good repeatability at room temperature. The underlying sensing mechanism of the α-Fe2O3/PANI/PbS QDs film toward methanol was ascribed to a series of interactions and changes on the surface of thin films, which make their resistance change greatly. Larger surface area and much more active adsorption sites also played an important role.

    关键词: Methanol gas sensor,Room temperature,Successive ionic layer adsorption and reaction,Hydrothermal method,α-Fe2O3/PANI/PbS QDs

    更新于2025-11-14 17:15:25

  • Self-template construction of honeycomb-like mesoporous YPO4:Ln3+ (Ln?=?Eu, Tb) phosphors with tuneable luminescent properties

    摘要: Rare earth (RE)-based phosphors with mesoporous structure that can improve the absorption and utilization of light have attracted much attention recently. Herein, we develop a novel and facile self-template strategy to synthesize honeycomb-like mesoporous YPO4:Ln3+ (Ln = Eu, Tb) phosphors using Y4O(OH)9NO3: Ln3+ as the precursor through a simple H3PO4 etching process. The maximum specific surface area of the mesoporous YPO4:Ln3+ phosphors can reach 406 m2 g?1. The influence of mesoporous structure, crystallinity, and the concentration of rare earth ions on the photoluminescence performance of mesoporous YPO4:Ln3+ phosphors was investigated. The results of fluorescence measurements indicate the mesoporous YPO4:Ln3+ phosphors exhibit better photoluminescence performance after calcination at 900 °C due to the large surface area and high crystallinity. The optimum doped concentrations of Eu3+ and Tb3+ ions are 0.12 and 0.08, respectively, and the concentration quenching occurs among nearest-neighbor ions. This work provide a new sight on preparation of phosphors for white light-emitting diodes lamps.

    关键词: Mesostructure,Ultrahigh specific surface area,Temperature dependent luminescence,Self-template strategy

    更新于2025-11-14 17:15:25

  • Yb/Er/Tm tri-doped Na3ZrF7 upconversion nanocrystals for high performance temperature sensing

    摘要: Non-contact optical thermometry based on fluorescence intensity ratio (FIR) technique has been widely researched over the past few decades. However, the reported systems exhibit two important shortcomings including the existence of a few interferential signals in addition to the required spectral bands for FIR and the absence of internal standard for reference signal. Herein, only two emission bands of Er3+: 4F9/2→4I15/2 (~673 nm) and Tm3+: 3H4 → 3H6 (~800 nm) are achieved in Yb/Er/Tm tri-doped Na3ZrF7 nano-system. Moreover, the upconversion (UC) emission intensity of Er3+ keeps unchanged with the rising of temperature, which is applied as reference signal; while that of Tm3+ enhances evidently, which is applied as temperature signal. The calculated maximum absolute temperature sensitivity (Sa) and relative temperature sensitivity (Sr) are 0.17 K-1 at 393 K and 1.76 %K-1 at 313 K, respectively.

    关键词: Na3ZrF7 nanocrystals,self-reference,rare earth ions,temperature sensor,upconversion

    更新于2025-11-14 17:04:02

  • Phosphorimetric determination of 4-nitrophenol using mesoporous molecular imprinting polymers containing manganese(II)-doped ZnS quantum dots

    摘要: Mesoporous molecularly imprinted polymers (MIPs) containing mangnanese-doped ZnS quantum dots (Mn-ZnS QDs) were prepared for specific recognition and detection of 4-nitrophenol (4-NP). The Mn-ZnS QDs display orange room-temperature phosphorescence with excitation/emission peaks at 295/590 nm and a decay time of 2.0 ms. In the presence of 4-NP, the orange phosphorescence is strongly reduced. Phosphorescence drops linearly in the 0.1–100 μM 4-NP concentration range, and the detection limit is 60 nM. The detection limit is far lower than the maximally allowed 4-NP concentrations in surface water and drinking water as specified by the U.S. Environmental Protection Agency. The intraday (n = 5) and interday (n = 6) spiked recovery rates were 96.0–104.5% and 97.9–107.9%, respectively, with relative standard deviations of 0.7–4.8% and 1.8–7.5% respectively. These MIPs integrated the characteristic features of phosphorimetry and molecular imprinting. Potential interference by competitive substances, background fluorescence or scattered light are widely reduced.

    关键词: Room-temperature phosphorescence,Mesoporous molecularly imprinted polymers,Photoinduced electron-transfer,4-Nitrophenol,Decay time

    更新于2025-11-14 17:04:02

  • The Preparation and Characterization of Fluorinated Graphene Oxide with Different Degrees of Oxidation

    摘要: For many excellent graphene derivatives, tailoring the material properties is crucial to get a broader application. In the present work, a series of fluorinated graphene oxide (FGO) with various oxidation degree were synthesized using a modified Hummers method at different reaction temperatures. The structure and property of FGO were analyzed by X-ray diffraction (XRD), Fourier transform infra-red spectra (FT-IR), X-ray photoelectron spectra (XPS) and Zeta potential analysis. The results indicate that the oxygen contents range from 5.61 % to 21.96 % in FGO can be tuned by altering the reaction temperatures. The oxygen in FGO is presented mainly in the form of epoxide and carboxyl groups. With increasing reaction temperature from 50 °C to 90 °C, the oxygen content in FGO decreases and thicker multilayered FGO is formed with lower dispersibility.

    关键词: Controllable oxidation,Fluorinated Graphene Oxide,Low temperature reaction

    更新于2025-11-14 17:04:02

  • Carbon dots synthesized at room temperature for detection of tetracycline hydrochloride

    摘要: The traditional synthesis methods of carbon dots (CDs) have some disadvantages of complicated operation and a large amount of energy consumption. To address these limitations, we synthesized yellow-green luminescent CDs at room temperature according to the principle of amine-aldehyde condensation in this work. This reaction is simple, economical, energy saving and is extremely consistent with the concept of green synthesis and sustainable development. In addition, studies have found that tetracycline hydrochloride (TC) can quench the fluorescence of the as-prepared CDs through Inner filter effect (IFE). The changes of the fluorescence intensity also have a good linear relationship with the concentration of TC in the range of 10.0-400.0 μM, and the detection limit is 6.0 μM. This method has been successfully used to determine the tetracycline content of tetracycline tablets. Finally, the interaction mechanism between TC and CDs was analyzed and discussed.

    关键词: room temperature synthesis,tetracycline,carbon dots

    更新于2025-11-14 17:03:37

  • Role of Yb3+ ion on the evaluation of energy transfer and cross-relaxation processes in Gd2Ce2O7: Yb3+, Er3+ phosphors

    摘要: Energy transfer (ET) and cross-relaxation (CR) processes play significant roles in regulating emitting colors and intensity of upconversion (UC) materials. Calculating the coefficients in ET and CR processes can provide visual descriptions for evaluating the UC luminescence properties. Here, we find that those ET and CR processes are responsible for the color-tunable properties in Gd2Ce2O7: Yb3+, Er3+ phosphors. By solving the rate equation, mathematical expressions are established to calculate the ET and CR coefficients based on the experimental UC spectra and lifetimes. The results are benefit to evaluate the efficiencies of ET and CR processes in quantization in different Yb3+ ion concentrations doped samples. The coefficients of ET process arise from 1.05 to 7.93 × 1017 cm3s?1 while those of CR process increase from 2.69 to 72.01 × 1017 cm3s?1 with increasing the Yb3+ ion concentration, which suggest that the CR and ET processes are efficient in Gd2Ce2O7 host. Furthermore, potential temperature sensing properties are also evaluated according to the fluorescence intensity ratio of 2H11/2 and 4S3/2 levels and the maximal sensitivity (S) is achieved about 0.00337 K?1 at 503 K. This work provides an insight into the evaluation of those UC processes and reveals the capacity in color-tunable and temperature sensing aspects.

    关键词: Upconversion,Mathematical expression,Cross-relaxation,Temperature sensing,Energy transfer

    更新于2025-11-14 17:03:37

  • Improved negative thermal quenching effect via high sensitizer doping content in NaGdF4 based active-core/active-shell architecture

    摘要: The strategies of introducing interior defects and reducing mean particle size have been applied to improve negative thermal quenching effect (TQE) in Yb3+ sensitized fluoride upconversion (UC) nanocrystals (NCs) recently. Herein, an active-core/active-shell structure with high total Yb3+ doping content is used to enhance the absorption intensity of Er3+ ions. Moreover, the Er3+ activators are doped into the shell to enable the energy migration process from activators to surface defects. In this scenario, with the rise of temperature, the suppression degree of this energy migration process is enlarged followed by an improved negative TQE. Specifically, with rising the temperature from 293 K to 413 K, the integral upconversion emission intensity of 40Yb: NaGdF4@60Yb/2Er: NaGdF4 NCs increases by ~ 8.24 times, while that of NaGdF4@20Yb/2Er: NaGdF4 NCs with a similar mean particle size only enhances ~ 3.44 times.

    关键词: Yb3+ concentration,upconversion,temperature sensing,negative thermal quenching

    更新于2025-11-14 17:03:37

  • Insights into the improved photocatalytic performance of fluorine surface modified mpg-C3N4 at room temperature under aqueous conditions

    摘要: A novel fluorine surface modified mesoporous carbon nitride (mpg-C3N4) photocatalysts were synthesized by etching SiO2 with NH4HF2. The mechanism of formation and the factors that affect its photocatalytic activity were investigated. Interestingly, the introduction of F atoms improves the performance of surface state and widens the energy band gap of surface-modified mpg-C3N4 due to the higher separation and efficient mobility of the photoinduced carriers. Consequently, the fluorine-modified mpg-C3N4 exhibits higher carrier lifetime (8.64 ns) than mpg-C3N4 (7.14 ns), which improves the photocatalytic efficiency under ultraviolet light. The enhanced photocatalytic activity was evaluated by studying the degradation experiments of Rhodamine B. It is expected that the present fluorine modification at the surface of mpg-C3N4 may provide new insights in basic research and energy conversion.

    关键词: fluorine surface modification,mpg-C3N4,room temperature,photocatalyst

    更新于2025-11-14 15:28:36

  • Excellent exciton luminescence of CsPbI3 red quantum dots in borate glass

    摘要: We have fabricated CsPbI3 perovskite quantum dots in a borate glass by melt-quenching technique. Three representative samples with different treatment conditions are investigated. As treatment condition enhances, energy gap is extracted as 1.75-1.76eV, and photoluminescence peak is adjustable from 675 to 691nm. Full width at half-maximum (FWHM) varies from 43 to 37 nm. PL intensity first increases and then decreases with increasing excitation wavelength, but the peak wavelength and line-shape are independent. High PLQY values of 23.8%-61.4% are obtained. The high PLQY values are attributed to good crystal quality and less energy dissipation. PL lifetime is fitted as 24.0-28.2ns and 100.2-123.0ns for short and long lifetime components in bi-exponential function. For temperature from 25 to 125 oC, PL intensity decreases, but it is reversible. Exciton binding energy is extracted in the level of 375-454meV. The FWHM broadening from 39 to 49nm and peak blue-shift from 690 to 685nm are investigated.

    关键词: Photoluminescence quantum yield,Lifetime,CsPbI3,Temperature dependence,Quantum dots glass,Exciton

    更新于2025-11-14 15:23:50