- 标题
- 摘要
- 关键词
- 实验方案
- 产品
过滤筛选
- 2019
- 2018
- 2015
- low-temperature electronics
- junction field-effect transistors
- Bessel Function
- Coupling Coefficient
- Fusion temperature and Elongation speed
- Infrared Thermography
- Statistical Analysis
- Mean Temperature Difference
- Surface temperature distribution
- Diabetic Foot Complications
- Optoelectronic Information Science and Engineering
- Electronic Science and Technology
- Physics
- Don State Technical University
- China Jiliang University
- UIN Suska Riau
- BMS College of Engineering
- Dalhousie University
- Majmaah University
- Soochow University
- University of Riau
- Karnataka Institute of Endocrinology and Research (KIER)
- Southern Federal University
-
Organic Field-Effect Transistor Based Ultrafast, Flexible, Physiological Temperature Sensors with Hexagonal Barium Titanate Nanocrystals in Amorphous Matrix as Sensing Material.
摘要: Organic field-effect transistors (OFETs) with hexagonal barium titanate nanocrystals in amorphous matrix (h-BTNC) as one of the bilayer dielectric system have been fabricated on a highly flexible 10 μm thick polyethylene terephthalate (PET) substrates. The device current and mobility remains same upto a bending radius of 4mm that make it suitable for wearable e-skin applications. h-BTNC films found to be highly temperature sensitive and the OFETs designed based on this material showed ultra-precession (~4.3 mK), low power (~ 1μW at 1.2 V operating voltage), ultrafast response (~24 ms) in sensing temperature over a range from 20 °C to 45 °C continuously. The sensors are highly stable around body temperature and work at various extreme conditions, such as under water, solutions of different pH as well as of various salt concentrations. These properties make this sensor very unique and highly suitable for various healthcare and other applications, where in a small variation of temperature around this temperature range is required to be measured at an ultra-fast speed.
关键词: low power OFETs,electronic skin,temperature sensors,organic field-effect transistors,flexible sensors,healthcare sensors
更新于2025-09-23 15:23:52
-
Superstructure Fiber Bragg Gratings for Simultaneous Temperature and Strain Measurement
摘要: A new and simple fiber optic sensor based on a superstructure fiber Bragg grating (SFBG) for simultaneous temperature and strain measurement is proposed. The SFBG is a superimposed grating for which a long period fiber grating (LPG) and a fiber Bragg grating (FBG) is written in the same section of a Corning SMF-28 fiber. The reflection spectrum of the SFBG possesses two resonant peaks and a trough. By measuring the wavelength shift of the main resonant peak and the reflection power change of the trough, temperature and strain can be determined simultaneously. The accuracy of the sensor in measuring strain and temperature is estimated to be ±13.01 με in a range from 0 με to 1000 με and ±0.75 ℃ from 20 ℃ to 100 ℃, respectively.
关键词: CO2 laser,SFBG,simultaneous measurement of temperature and strain,fiber optic sensor
更新于2025-09-23 15:23:52
-
Singular spectrum analysis filtering and Fourier inversion: an efficient and fast way to improve resolution and quality of current density maps with low-cost Hall scanning systems
摘要: We provide a Biot–Savart inversion scheme that, for any two-dimensional, or bulk with planar crystallization, high-temperature superconducting (HTS) sample, determines current density maps with a higher resolution and accuracy than previous procedures and at a fraction of its computational cost. The starting point of our scheme is a Hall scanning microscopy map of the out-of-plane component of the magnetic field generated by the current. Such maps are noisy in scans of real samples with commercial-grade equipment, and their error is the limiting factor in any Biot–Savart inversion scheme. The main innovation of our proposed scheme is a singular spectrum analysis (SSA) filtering of the Hall probe maps, which cancels measurement errors such as noise or drifts without introducing any artifacts in the field map. The SSA filtering of the Hall probe data is so successful in this task that the resulting magnetic field map does not require an overdetermined QR inversion, allowing Fourier inversion of the Biot–Savart problem. Our implementation of SSA filtering of the Hall scan measurements, followed by Biot–Savart inversion using the fast Fourier transform (FFT), is applied to both simulations and real samples of HTS tape stacks. The algorithm works in cases where ill conditioning ruled out the application of Fourier inversion, and achieves a finer resolution for a fraction of the cost of the QR inversion used to date. The computation passes physical and statistical validity tests in all cases, and in three-dimensional samples it is shown to yield the average, with a depth-dependent weight, of the current density circulating in the different layers of the sample.
关键词: Hall magnetometry,SSA filtering,fast Fourier transform,high-temperature superconducting tapes,Biot–Savart inversion
更新于2025-09-23 15:23:52
-
Temperature independent low firing [Ca0.25(Nd1-xBix)0.5]MoO4 (0.2 ≤ x ≤ 0.8) microwave dielectric ceramics
摘要: A scheelite structured [Ca0.25(Nd1-xBix)0.5]MoO4 (0.2 (cid:1) x (cid:1) 0.8) ceramics were prepared via solid state reaction method. All the ceramics can be well densi?ed below 780 (cid:3)C. As x value increased from 0.2 to 0.8, microwave dielectric permittivity increased from 14.0 to 27.8, Qf (Q ? quality factor ? 1/dielectric loss; f ? resonant frequency) value decreased from 42,000 GHz to 19,000 GHz, and TCF shifted from (cid:4)50 ppm/oC to t18 ppm/oC. The best microwave dielectric properties with permittivity between 23.54 and 23.56, Qf value between 24,000 GHze21,000 GHz and TCF value ~ (cid:4)8 ppm/oC in wide temperature range 25 (cid:3)Ce130 (cid:3)C were obtained in x ? 0.6 ceramic. This work showed that Bi played an important role to modify the TCF from negative to positive value in scheelite materials and this result further accelerate the application of scheelite materials in low temperature co-?red ceramics (LTCC) technology.
关键词: Microwave dielectric properties,Low temperature sintering,MoO3,Scheelite
更新于2025-09-23 15:23:52
-
Modulated up-conversion luminescence and low-temperature sensing of Gd3Ga5O12:Yb3+/Er3+ by incorporation of Fe3+ ions
摘要: Yb3+/Er3+ co-doped crystals show strong up-conversion luminescence and their temperature dependence of luminescence intensity enable the application of temperature sensors. Such sensors usually work at hundreds Kelvin with high sensitivity, while the sensors appropriate to very low temperatures are rarely reported. In this study, we report the low temperature sensing of Gd3Ga5O12:Yb3+/Er3+ nanocrystals by partial or total substitution of Ga3+ by Fe3+ ions. The up-conversion photoluminescence of the nanocrystals is measured on cooling from 300 to 4.2 K. The low-temperature sensing performance is improved, and the structure, magnetic and optical properties are modulated by the substitution of Fe3+ ions, rendering the nanocrystal useful for multi-functional sensing application.
关键词: Temperature sensor,Magnetic doping,Photoluminescence,Up-conversion
更新于2025-09-23 15:23:52
-
Multichannel luminescence properties and ultrahigh-sensitive optical temperature sensing of mixed-valent Eu2+/Eu3+ co-activated Ca8ZrMg(PO4)6(SiO4) phosphors
摘要: A novel dual-emitting Ca8ZrMg(PO4)6(SiO4): (Eu3+, Eu2+) phosphors with ultrahigh-sensitive optical temperature sensing are prepared by a conventional solid-state method. The Eu2+/Eu3+ co-activated Ca8ZrMg(PO4)6(SiO4) phosphors exhibit efficient dual-mode emissions with an intense, broad blue emission peaked at 414 nm and a relative bright red-emitting centered at 614 nm under 297 nm UV-light excitation, respectively. Furthermore, the fluorescence intensity ratio (FIR) technology is applied to analyze the optical temperature sensing performance of Ca8ZrMg(PO4)6(SiO4): (Eu3+, Eu2+) phosphors. Based on different thermal quenching behavior of Eu2+ and Eu3+ dual-emitting centers, linear temperature-dependent FIR between Eu2+ and Eu3+ is obtained. The maximal absolute sensitivity reaches as high as 5.94% K-1, which is superior to that for the other luminescent temperature sensing materials reported previously. Analyses of the temperature-dependent photoluminescence spectra and configurational coordinate diagrams for Ca8ZrMg(PO4)6(SiO4): (Eu3+, Eu2+) phosphors indicate that the temperature-sensitive variation in FIR of Eu2+ to Eu3+ is originated from the difference in thermal quenching activation energy for 5d→4f transition of Eu2+ and 5D0→7FJ (J=1, 2, 4) transitions of Eu3+. These results reveal that the Ca8ZrMg(PO4)6(SiO4): (Eu3+, Eu2+) phosphors show glorious potential in high temperature optical thermometry.
关键词: Co-activated,Ca8ZrMg(PO4)6(SiO4),Optical temperature sensing,FIR
更新于2025-09-23 15:23:52
-
High room-temperature pyroelectric property in lead-free BNT-BZT ferroelectric ceramics for thermal energy harvesting
摘要: Pyroelectrics are attracting increasing attention because they enable pyroelectric generators to extract energy from low-gradient-temperature heat for portable electronic devices. High pyroelectric coefficient around room temperature is essential for high-performance energy harvesters, which, unfortunately, is only commonly achieved in lead-based ferroelectrics. Herein we report a high room temperature pyroelectric response of 27.2 × 10-4 C m-2 K-1 in 0.94(Bi0.5Na0.5)TiO3-0.06Ba(Ti0.75Zr0.25)O3 lead-free ceramics by modulating the Zr4+/Ti4+ ratio to tune the ferroelectric-relaxor antiferroelectric-like phase transition point to around ambient temperature, whose pyroelectric response is one order of magnitude higher than that of the sample without Zr and even comparable to those of lead-containing pyroelectrics. The theoretical analysis revealed that introduced Zr4+ could incorporate into the TiO6 octahedral lattices and break the long-range translational symmetry of BaTiO3 lattices, resulting in the reduction of B-site ion displacement activation energy and transition point of ferroelectric-relaxor antiferroelectric-like phase, giving rise to a pronounced room-temperature pyroelectric effect in BNT-BZT.
关键词: BNT-BZT ceramics,Energy harvesting,Room temperature pyroelectric property,Phase transition
更新于2025-09-23 15:23:52
-
[IEEE 2018 7th Electronic System-Integration Technology Conference (ESTC) - Dresden, Germany (2018.9.18-2018.9.21)] 2018 7th Electronic System-Integration Technology Conference (ESTC) - Integration with Light
摘要: This paper reports the use of Laser-induced Forward Transfer (LIFT) technology for printing of multilayer flexible circuitries and the fabrication of micro-bumps for flip-chip bonding of packaged LEDs and bare die microcomponents. Bonding of passive and functional surface mount devices (SMD) on low-temperature polyethylene terephthalate (PET) foils have been demonstrated using two selective bonding techniques. Firstly, using a high intensity near-infrared (NIR) lamp, a bare die NFC chip was bonded on micro-bumps formed with LIFT printed isotropic conductive adhesive (ICA) within less than a minute. Secondly, using a high intensity Xenon lamp, passive components and packaged LEDs were bonded within 5 seconds on micro-bumps formed with conventional Sn–Ag–Cu (SAC) lead-free alloys. In the both cases, due to selective light absorption, a limited temperature increase was observed in the PET substrates allowing successful bonding of components onto the delicate polyethylene foil substrates using conventional interconnect materials.
关键词: LIFT,low temperature bonding,NIR curing,conductive adhesive,lead-free SAC solder,photonic soldering,flip-chip bonding,laser printing
更新于2025-09-23 15:23:52
-
Influence of substrate and substrate temperature on the structural, optical and surface properties of InGaN thin films prepared by RFMS method
摘要: In this work, the pure InGaN thin films were grown using n-type and p-type silicon substrates at varying substrate temperatures using the sputtering method. The effects of substrate and substrate temperature on the structural, morphological and optical properties of the thin films grown were investigated. X-ray diffraction (XRD) analyzes of the obtained films illustrates crystal structures at C substrate temperature, the films were found to be hexagonal. Scanning electron microscopy (SEM) was used to investigate the shape, size and surface distribution of the particles formed on film surfaces. The reflection and optical band gap (Eg) of the films were investigated from the optical analyzes taken with the UV-VIS spectrophotometer. As a result of these analyzes, it has been reached that the substrate and substrate temperature have a great influence on the structural, morphological and optical properties of the films. The experimental findings obtained in the study are compared with the studies given in the literature and the similarities and differences are discussed.
关键词: InGaN growth,silicon substrate,thin films,sputtering technique,substrate temperature
更新于2025-09-23 15:23:52
-
[IEEE 2018 IEEE ISAF-FMA-AMF-AMEC-PFM Joint Conference (IFAAP) - Hiroshima (2018.5.27-2018.6.1)] 2018 IEEE ISAF-FMA-AMF-AMEC-PFM Joint Conference (IFAAP) - Data-Mining Driven Design for Novel Perovskite-type Piezoceramics
摘要: Materials Genome Initiative is envisioning the discovery, development, manufacturing and deployment of advanced materials twice as fast and at a fraction of cost. High throughput computation and experimentation will generate big data, which underscores the emergence of the fourth paradigm---data science. In contrast to machine-learning needing big-data, data-mining assisted by domain knowledge and expertise works well with a limited number of data. In this presentation, data-mining based on material genome approach were performed in field of perovskite-type oxides. New ferroelectric ceramics based on BiFeO3 for high temperature piezoelectric applications are realized with piezoresponse of 1.5~4.0 times the present commercial non-perovskite counterpart. Our essay demonstrates data-mining driven searching sure able to reduce time-to-insight and human effort on synthesization, accelerating new materials discovery and deployment.
关键词: piezoceramics,perovskite-type oxides,material genome approach,high Curie temperature,data-mining
更新于2025-09-23 15:23:52