- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Effect of the third component on charge transfer character in ternary organic solar cells with a cascade-type electronic structure
摘要: By incorporating a third component into the host donor/acceptor organic components, we theoretically investigate the effects of its electronic structure and spatial location on charge transfer character. It is found that both of the two factors can modulate the distribution of transferred charges, and thus change the role of the third component in charge transfer (i.e., electron donor or acceptor). The binding energy of the formed charge transfer (CT) state is also determined by the two factors. Especially, we find an optimized spatial location of the third component, at which the binding energy of the formed CT state has a minimum value. It suggests that charge separation can be promoted. These findings will provide us a clear direction on how to optimize the electronic structure and spatial location of the third component to further improve the charge transfer and separation in ternary organic solar cells.
关键词: Ternary strategy,Organic solar cells,Charge transfer
更新于2025-09-19 17:13:59
-
Improvement of Exciton Collection and Light-Harvesting Range in Ternary Blend Polymer Solar Cells Based on Two Non-Fullerene Acceptors
摘要: A non‐fullerene molecule named Y6 was incorporated into a binary blend of PBDB‐T and IT‐M to further enhance photon harvesting in the near‐infrared (near‐IR) region. Compared with PBDB‐T/IT‐M binary blend devices, PBDB‐T/IT‐M/Y6 ternary blend devices exhibited an improved short‐circuit current density (JSC) from 15.34 to 19.09 mA cm?2. As a result, the power conversion efficiency (PCE) increased from 10.65% to 12.50%. With an increasing weight ratio of Y6, the external quantum efficiency (EQE) was enhanced at around 825 nm, which is ascribed to the absorption of Y6. At the same time, EQE was also enhanced at around 600–700 nm, which is ascribed to the absorption of IT‐M, although the optical absorption intensity of IT‐M decreased with increasing weight ratio of Y6. This is because of the efficient energy transfer from IT‐M to Y6, which can collect the IT‐M exciton lost in the PBDB‐T/IT‐M binary blend. Interestingly, the EQE spectra of PBDB‐T/IT‐M/Y6 ternary blend devices were not only increased but also red‐shifted in the near‐IR region with increasing weight ratio of Y6. This finding suggests that the absorption spectrum of Y6 is dependent on the weight ratio of Y6, which is probably due to different aggregation states depending on the weight ratio. This aggregate property of Y6 was also studied in terms of surface energy.
关键词: non‐fullerene,exciton harvesting,surface energy,ternary blend solar cells,energy transfer
更新于2025-09-19 17:13:59
-
Improving the photo-current of poly(3-hexylthiophene): [6,6]-phenyl C71 butyric acid methyl-ester photodetector by incorporating the small molecules
摘要: This work demonstrates the improvement in photo-current response of poly(3-hexylthiophene) (P3HT)-based thin film organic photodetector by introducing [6,6]-phenyl C71 butyric acid methyl-ester (PC71BM) as an acceptor in binary blended thin films and vanadyl 3,10,17,24-tetra-tert-butyl-1,8,15,22-tetrakis(dimethylamino)-29H,31H-phthalocyanine (VTP) as a complementary holes’ component in ternary blended thin films. The combination of these materials creates favorable energy levels that facilitates the transport of charge carriers from one material to another until it reaches at the respective electrodes. The increase in optical absorption across broader spectral range, the increase in interfacial area and the enhancement in electrical parameters were observed and discussed. In this study, device with ternary P3HT:PC71BM:VTP blended thin films with ratio of 1:1:1 shown the best photo-current response (at 1 V), in which the increase in short-circuit photocurrent density (Jsc) (6.0 mA/cm2) is 78% higher than that of P3HT:PC71BM:VTP with ratio of 1:1:2. The Jsc of ternary blended thin film device (1:1:1) is 5 times higher than that of single material device and it appeared to be 58% higher than that of binary P3HT:PC71BM devices. The increase electrical parameters indicated a significant enhancement in photo-current with the introduction of ternary blended thin films organic photodetector that constitutes of well-matched materials based on their individual optical, morphological and electrical properties.
关键词: ternary blend,Organic photodetector,small molecule
更新于2025-09-19 17:13:59
-
Alkyl Chain Tuning of Small Molecule Acceptors for Efficient Organic Solar Cells
摘要: A new non-fullerene acceptor, named N3, was developed by using a 3rd-position branched alkyl chain on the pyrrole motif of the molecule, which yielded better performance than the state-of-the-art acceptor Y6. Ternary devices were fabricated, achieving a power conversion efficiency of 16.74% in the lab and a certified efficiency of 16.42% by Newport.
关键词: power conversion efficiency,ternary strategy,non-fullerene acceptor,alkyl chain tuning,organic solar cells
更新于2025-09-19 17:13:59
-
Efficient Charge Transfer and Carrier Extraction in All-Polymer Solar Cells Using an Acceptor Filler
摘要: All-polymer solar cells (all-PSCs) exhibit considerably improved mechanical and thermal stability than their polymer-fullerene counterparts. Despite their advantages, the power conversion efficiencies of all-PSCs are still lower than those of polymer-fullerene PSCs. In this study, we demonstrate that introducing a small amount of fullerene or nonfullerene acceptors as filler into the photoactive layer of PBDBT:N2200 all-PSCs can enhance charge transport properties, thereby the device performance. An appreciable enhancement (~21%) in the power-conversion-efficiencies (PCEs) of all-PSCs, from 6.13% to 7.42%, is obtained when fullerene with the amount of 25 wt% PBDBT is added. The performance improvement is primary from the enhanced short circuit current density (Jsc), which can be attributed to the enhanced exciton dissociation, reduced charge recombination, and balanced charge transport in the prescence of the fullerene filler. Similar behavior is also observed when fullerene is replaced by ITIC molecules. Importantly, the fullerene filler shows a negiligible effect on the device storage and light-soaking stability. Therefore, all-PSCs incorporating a proper selected acceptor filler is an efficient way to improve device performance without sacrificing stability. We believe that our study can pave a useful approach for developing stable and high performance PSCs.
关键词: filler,all-polymer solar cell,charge transport,ternary,charge extraction
更新于2025-09-19 17:13:59
-
Trade‐Off between Exciton Dissociation and Carrier Recombination and Dielectric Properties in Y6‐Sensitized Nonfullerene Ternary Organic Solar Cells
摘要: Organic photovoltaics (OPVs) have emerged as a promising renewable energy generation technology in past decades. However, the deep understanding of the details in exciton dissociation and carrier recombination in ternary organic solar cells (OSCs) is still lacking. Herein, a novel ternary OSC based on a PTB7-Th:Y6:ITIC blend with a power conversion efficiency (PCE) enhancement of 29% is reported. A trade-off is surprisingly found to exist between the exciton dissociation and carrier recombination process. The addition of nonfullerene acceptor Y6 in the ternary blend is found to create an efficient exciton dissociation process but accelerates the free carrier recombination process. Dielectric properties are also studied for ternary OSCs. The addition of Y6 into the binary blend is found to tune down the dielectric constant of the active layer and as a result accelerates the carrier recombination. The best performance is obtained for PTB7-Th:Y6(5 wt%):ITIC(95 wt%)-based ternary devices. In addition to its balanced charge carrier mobility and efficient charge extraction process, PTB7-Th:Y6(5 wt%):ITIC(95 wt%)-based ternary devices reach a balance in the trade-off between the exciton dissociation and carrier recombination process and thus achieve the highest short-circuit current density (Jsc) value.
关键词: nonfullerene,carrier recombination and dielectric constants,ternary,organic solar cells,exciton dissociation
更新于2025-09-19 17:13:59
-
A Nonfullerene Acceptor with Alkylthio‐ and Dimethoxy‐Thiophene‐Groups Yielding High‐Performance Ternary Organic Solar Cells
摘要: Herein, an A–D–A-type nonfullerene acceptor (named IDTS-4F) with an alkyl thiophenyl side chain and dimethoxy thiophene bridging unit is reported. The use of an alkyl thiophenyl group is important, as the insertion of sulfur atoms can slightly downshift the highest occupied molecular orbital (HOMO) level of the molecule and allows IDTS-4F to match with state-of-the-art donor polymer PM6 (or PM7). Compared with conventional nonfullerene acceptors, IT-4F, the IDTS-4F molecule, has a smaller optical bandgap and higher lowest unoccupied molecular orbital (LUMO) level, which are beneficial to increase the Voc and Jsc of the devices. Nonfullerene organic solar cell devices are fabricated using IDTS-4F. Although the binary device based on IDTS-4F exhibits a lower fill factor (FF, 70%), the ternary device by incorporating 0.2 of IDTS-4F and 0.8 of IT-4F (with PM6 as the donor polymer) can simultaneously achieve a higher Voc and Jsc, while maintaining the high FF (77%) of IT-4F based system. Morphology characterizations indicate the formation of homogeneous film morphology, the large increase in phase purity and crystallinity, and the reduction in domain size upon addition of crystalline IDTS-4F, while the electron/hole mobilities and recombination losses of the IT-4F system are both maintained.
关键词: polymer solar cells,nonfullerene acceptors,fullerene-free,organic solar cells,ternary solar cells
更新于2025-09-19 17:13:59
-
A General Method: Designing a Hypocrystalline Hydroxide Intermediate to Achieve Ultrasmall and Well‐Dispersed Ternary Metal Oxide for Efficient Photovoltaic Devices
摘要: Solution-process fine metal-oxide nanoparticles are promising carrier transport layer candidates for unlocking the full potential of solution process in solar cells, due to their low cost, good stability, and favorable electrical/optical properties. However, exotic organic ligands adopted for achieving small size and monodispersion can mostly cause poor conductivity, which thus impedes their electrical application. In this work, a concept of constructing a hypocrystalline intermediate is proposed to develop a general method for synthesizing various ternary metal oxide (TMO) nanoparticles with a sub-ten-nanometer size and good dispersibility without exotic ligands. Particularly, a guideline is summarized based on the understandings about the impact of metal ion intercalation as well as water and anion coordination on the hypocrystalline intermediate. A general method based on the proposed concept is developed to successfully synthesize various sub-ten-nanometer TMO nanoparticles with excellent ability for forming high-quality (smooth and well-coverage) films. As an application example, the high-quality films are used as hole transport layers for achieving high-performance (stability and efficiency) organic/perovskite solar cells. Consequently, this work will contribute to the development of TMO for large-scale and high-performance optoelectronic devices and the concept of tailoring intermediate can leverage the fundamental understandings of synthesis strategies for other metal oxides.
关键词: ternary metal oxide nanoparticles,general method,perovskite solar cells,hypocrystalline intermediate,organic solar cells
更新于2025-09-19 17:13:59
-
COMPARISON OF PERFORMANCES OF ORGANIC PHOTOVOLTAIC CELLS USING SubPc AS CENTRAL AMBIPOLAR LAYER IN TERNARY STRUCTURES AND AS ELECTRON ACCEPTOR IN BINARY STRUCTURES
摘要: We compare the performances of organic photovoltaic cells (OPVCs) based on binary and ternary planar heterojunctions. The organic active layers are pentathiophene (5T), subphthalocyanine (SubPc) and fullerene (C60). SubPc being an ambipolar material we used it either as electron acceptor in binary OPVCs or as central layer in ternary cells in order to increase the efficiency of OPVCs using 5T as electron donor. So, the different OPVC configurations were 5T/C60, 5T/SubPc and 5T/SubPc/C60. The effect of the different organic layer thicknesses on the device performances was studied. In order to understand the behavior of the different OPVC configurations, we proceeded with a morphological study. The influence of the high roughness of the 5T layer on the OPVCs performances is discussed. The best OPVCs performances are obtained with the binary structure 5T/SubPc. Its maximum efficiency corresponds to an increase of 50% compared to the OPVC based on the couple 5T/C60. External Quantum Efficiency measurements show that both layers participate to the current generation. The efficiency increase is mainly due to the increase of the open circuit voltage (Voc). In the case of ternary OPVCs, Voc is limited by the band structure of 5T and C60, moreover, the efficiency is also limited by the poor charge collection efficiency of the ternary structure and the series resistance of the three stacked organic layers.
关键词: Organic photovoltaic cells,ternary structures,pentathiophene,subphthalocyanine,binary structures
更新于2025-09-19 17:13:59
-
13.2% Efficiency of Organic Solar Cells by Controlling Interfacial Resistance resulted from Well-distributed Vertical Phase Separation
摘要: Two strategies were investigated to improve the efficiency of organic solar cells (OSCs) with the aim of controlling the interfacial resistance in the devices: the use of a ternary active layer and the introduction of conjugated polymers. The ternary active layer was formed by introducing PC71BM between a high-performance non-fullerene photoactive material P(Cl-Cl)(BDD=0.2) and the IT-4F-based binary active layer, thereby reducing the interfacial resistance between the donor and acceptor via vertical phase separation. Furthermore, the introduction of the conjugated polymer PFN-Br created a well-dispersed separation attributable to enhancement of the interfacial contact with the active layer, and simultaneous reduction of the interfacial resistance. Consequently, the synergetic effect of the ternary active layer and PFN-Br enhanced the short-circuit current density (JSC) and fill factor (FF) to realize power conversion efficiency (PCE) of 13.2%.
关键词: Power conversion efficiency,Interfacial resistance,Conjugated polymers,Ternary active layer,Organic solar cells
更新于2025-09-19 17:13:59