- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Deep learning for patient‐specific quality assurance: identifying errors in radiotherapy delivery by radiomic analysis of gamma images with convolutional neural networks
摘要: Purpose: Patient-specific quality assurance (QA) for intensity-modulated radiation therapy (IMRT) is a ubiquitous clinical procedure, but conventional methods have often been criticized as being insensitive to errors or less effective than other common physics checks. Recently, there has been interest in the application of radiomics, quantitative extraction of image features, to radiotherapy quality assurance. In this work we investigate a deep learning approach to classify the presence or absence of introduced radiotherapy treatment delivery errors from patient-specific QA. Methods: Planar dose maps from 186 IMRT beams from 23 IMRT plans were evaluated. Each plan was transferred to a cylindrical phantom CT geometry. Three sets of planar doses were exported from each plan corresponding to 1) the error-free case 2) a random multileaf collimator (MLC) error case and 3) a systematic MLC error case. Each plan was delivered to the electronic portal imaging device (EPID) and planned and measured doses were used to calculate gamma images in an EPID dosimetry software package (for a total of 558 gamma images). Two radiomic approaches were used. In the first, a convolutional neural network with triplet learning was used to extract image features from the gamma images. In the second, a handcrafted approach using texture features was used. The resulting metrics from both approaches were input into four machine learning classifiers (support vector machines, multilayer perceptrons, decision trees, and k-nearest-neighbors) in order to determine whether images contained the introduced errors. Two experiments were considered: the two-class experiment classified images as error-free or containing any MLC error, and the three-class experiment classified images as error-free, containing a random MLC error, or containing a systematic MLC error. Additionally, threshold-based passing criteria were calculated for comparison. Results: 303 gamma images were used for model training and 255 images were used for model testing. The highest classification accuracy was achieved with the deep learning approach, with a maximum accuracy of 77.3% in the two-class experiment and 64.3% in the three-class experiment. The performance of the handcrafted approach with texture features was lower, with a maximum accuracy of 66.3% in the two-class experiment and 53.7% in the three-class experiment. Variability between the results of the 4 machine learning classifiers was lower for the deep learning approach versus the texture feature approach. Both radiomic approaches were superior to threshold-based passing criteria. Conclusions: Deep learning with convolutional neural networks can be used to classify the presence or absence of introduced radiotherapy treatment delivery errors from patient-specific gamma images. The performance of the deep learning network was superior to a handcrafted approach with texture features, and both radiomic approaches were better than threshold-based passing criteria. The results suggest that radiomic quality assurance is a promising direction for clinical radiotherapy.
关键词: radiomics,IMRT QA,deep learning,quality assurance,texture features
更新于2025-09-04 15:30:14
-
[IEEE 2018 25th IEEE International Conference on Image Processing (ICIP) - Athens, Greece (2018.10.7-2018.10.10)] 2018 25th IEEE International Conference on Image Processing (ICIP) - Peekaboo-Where are the Objects? Structure Adjusting Superpixels
摘要: This paper addresses the search for a fast and meaningful image segmentation in the context of k-means clustering. The proposed method builds on a widely-used local version of Lloyd’s algorithm, called Simple Linear Iterative Clustering (SLIC). We propose an algorithm which extends SLIC to dynamically adjust the local search, adopting superpixel resolution dynamically to structure existent in the image, and thus provides for more meaningful superpixels in the same linear runtime as standard SLIC. The proposed method is evaluated against state-of-the-art techniques and improved boundary adherence and undersegmentation error are observed, whilst still remaining among the fastest algorithms which are tested.
关键词: Image texture analysis,Image segmentation,Clustering algorithms
更新于2025-09-04 15:30:14
-
A Novel Multi-Exposure Image Fusion Method Based on Adaptive Patch Structure
摘要: Multi-exposure image fusion methods are often applied to the fusion of low-dynamic images that are taken from the same scene at different exposure levels. The fused images not only contain more color and detailed information, but also demonstrate the same real visual effects as the observation by the human eye. This paper proposes a novel multi-exposure image fusion (MEF) method based on adaptive patch structure. The proposed algorithm combines image cartoon-texture decomposition, image patch structure decomposition, and the structural similarity index to improve the local contrast of the image. Moreover, the proposed method can capture more detailed information of source images and produce more vivid high-dynamic-range (HDR) images. Speci?cally, image texture entropy values are used to evaluate image local information for adaptive selection of image patch size. The intermediate fused image is obtained by the proposed structure patch decomposition algorithm. Finally, the intermediate fused image is optimized by using the structural similarity index to obtain the ?nal fused HDR image. The results of comparative experiments show that the proposed method can obtain high-quality HDR images with better visual effects and more detailed information.
关键词: texture information entropy,adaptive selection,multi-exposure image fusion,patch structure decomposition
更新于2025-09-04 15:30:14