- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
[IEEE 2018 IEEE International Conference on Electrical Engineering and Photonics (EExPolytech) - Saint Petersburg, Russia (2018.10.22-2018.10.23)] 2018 IEEE International Conference on Electrical Engineering and Photonics (EExPolytech) - Porous Silicon as a Material for Nanocomposites and the Effect of its Parameters on the Morphology of Silver Clusters
摘要: On the example of the por-Si/Ag composites it is demonstrated the ability to control the morphology of the guest material (Ag) by changing the parameters of the porous media (por-Si). Two groups of key parameters of porous materials important for creating composites based on them are discussed. Porous silicon was obtained by electrochemical anodic etching. The introducing Ag into the pores was performed by the cathodic electrochemical deposition. It is observed the increasing the anodizing time is leads to the noticeably changes of wetting angle of por-Si, and, in turn, significantly affects the morphology of Ag clusters. The growth mechanisms of Ag clusters on the por-Si surface and the fields of its potential application are discussed.
关键词: porous texture,surface properties,porous silicon composites,por-Si/Ag composites,electrochemical deposition,surface functionality,silver clusters
更新于2025-09-23 15:19:57
-
Effect of Laser Processing Parameters on Surface Texture of Ti6Al4V Alloy
摘要: Surface micro-machining was performed on Ti6Al4V alloy sample by nanosecond laser. The micro-morphology, the depth of texture and the chemical composition of melt deposits were analyzed through different techniques including Ultra-Depth Microscopy, SEM and EDS. The single factor method was applied to investigate the influence of different laser parameters on the depth of texture and micro-morphology. The result showed that the depth of texture increased first and decreased with the increase of average power (11-20.9W), the texture depth decreases sharply when the scanning speed increased from 10mm/s to 40mm/s, and the repetition frequency had little effect on the depth of texture. It was possible to select an optimum combination of laser processing parameters that obtain different depths of texture without decreasing the surface quality of texture.
关键词: laser processing parameters,micro-morphology,Ti6Al4V alloy,depth of texture,surface texture
更新于2025-09-12 10:27:22
-
Modeling and design for low‐cost multijunction solar cell via light‐trapping rear texture technique: Applied in InGaP/GaAs/InGaAs triple junction
摘要: To realize high efficiency in parallel with low cost, a light‐trapping rear texture was proposed to be implemented in substrate‐free thin‐film multijunction (MJ) cells. A detailed‐balance theory was formulated taking account of the finite light absorption in thin subcells. Such presented absorption model is general and useful to optimize the subcell thickness for MJ solar cells with light‐trapping design. It is applied for InGaP/GaAs/InGaAs triple‐junction solar cells to simulate subcell photocurrents and to obtain the current‐matching (minimum requisite) subcell thicknesses combinations. Furthermore, the detailed‐balance conversion efficiency was estimated for both radiative limit and the cases with below‐unity internal radiative efficiency. For InGaP/GaAs/InGaAs MJ cells with InGaP subcell thickness less than 600 nm, adding a random‐textured rear reflector can enhance light absorption so significantly that over 90% of InGaAs‐cell thickness and even 50% of GaAs‐cell thickness would be cut without any penalty in conversion efficiency, compared with the subcell thicknesses in traditional MJ cells with flat rear reflectors. Additionally, the thickness combination, (InGaP, GaAs, and InGaAs) = (450 nm, 333 nm, and 26 nm), is recommended to achieve both high conversion efficiency and low material cost. This work provides a very important theoretical guidance for the development on low‐cost and high‐efficiency MJ devices.
关键词: detailed‐balance limit,low cost,multijunction solar cell,texture surface,light trapping
更新于2025-09-12 10:27:22
-
Variation of Surface Topography in Laser Powder Bed Fusion Additive Manufacturing of Nickel Super Alloy 625
摘要: This document provides details on the files available for download in the dataset “Variation of Surface Topography in Laser Powder Bed Fusion of Nickel Super Alloy 625.” The following sections provide details on the experiments, methods, and data files. The experiment detailed in this document methodically varies part position and surface orientation relative to the build plate and relative to the recoater blade. This dataset provides surface height data for analysis and development of correlations by the greater research community.
关键词: additive manufacturing,focus variation,IN625,surface texture,surface topography,nickel super alloy 625,laser powder bed fusion
更新于2025-09-11 14:15:04