- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Correlation between Near-Field Enhancement and Dephasing Time in Plasmonic Dimers
摘要: Near-field enhancement and dephasing time play critical roles in several applications of localized surface plasmon resonance. Here, using an example gold dimer system, we reveal the correlation between the near-field enhancement and dephasing time via time-resolved photoemission electron microscopy. Compared with isolated particles, dimers with small gap sizes show stronger near-field enhancement and shorter dephasing times. These results are well reproduced by numerical simulations and further explained by a coupled dipole approximation model. The roles of near- and far-field coupling and plasmon localization in balancing near-field enhancement and dephasing time are also unveiled.
关键词: dephasing time,time-resolved photoemission electron microscopy,near-field enhancement,plasmonic dimers,coupled dipole approximation model
更新于2025-09-23 15:19:57
-
Characterization of ultrafast plasmon dynamics in individual gold bowtie by time-resolved photoemission electron microscopy
摘要: We report on the investigation of ultrafast dynamics of the plasmonic field in individual gold bowtie nanostructure by combining interferometric time-resolved photoemission electron microscopy with a damped harmonic oscillator model. We experimentally obtain different plasmon dephasing times in the tips of the bowtie nanostructure. In the meantime, we demonstrate that the experimental time-resolved photoemission signal can be used to directly compare resonance frequency and dephasing time of different hot spots. In addition, we find that the plasmon field, which is extracted from the photoemission signal, initially oscillates at the laser field frequency, and finally develops into its eigenfrequency after experiencing a few periods of frequency fluctuation due to the competition between forced and autonomous oscillation of the plasmons.
关键词: ultrafast plasmon dynamics,gold bowtie,resonance frequency,plasmon dephasing times,time-resolved photoemission electron microscopy
更新于2025-09-09 09:28:46