- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
EXPRESS: Cyclic Changes in the Amide Bands Within <i>Escherichia coli</i> Biofilms Monitored Using Real-Time Infrared Attenuated Total Reflection Spectroscopy
摘要: Contrary to the planktonic state of bacteria, their biofilm form represents severe complications in areas such as human medicine or food industry due to the increasing resistance against harsh conditions and treatment. In the present study, infrared attenuated total reflection (IR-ATR) spectroscopy has been applied as an analytic tool studying Escherichia coli (E. coli) biofilm formation close to real time. We report on IR spectroscopic investigations on the biofilm formation via ATR waveguides probing the biofilm in the spectral window of 1800–900 cm?1 at dynamic flow conditions, which facilitated monitoring the growth dynamics during several days. Key IR bands are in the range 1700–1590 cm?1 (amide I), 1580–1490 cm?1 (amide II), and 1141–1006 cm?1 extracellular polymeric substances (EPS), which were evaluated as a function of time. Cyclic fluctuations of the amide I and amide II bands and a continuous increase of the EPS band were related to the starvation of bottom-layered bacteria caused by the nutrient gradient. Potential death of bacteria may then result in cannibalistic behavior known for E. coli colonies. Observing this behavior via IR spectroscopy allows revealing these cyclical changes in bottom-layered bacteria within the biofilm under continuous nutrient flow, in molecular detail, and during extended periods for the first time.
关键词: bacteria,starvation,Escherichia coli,EPS,IR-ATR spectroscopy,amide band,biofilm,infrared attenuated total reflectance
更新于2025-09-19 17:15:36
-
Interaction of Zinc Oxide and Copper Oxide Nanoparticles with Chlorophyll: A Fluorescence Quenching Study
摘要: The present study aims to investigate the interactions of zinc oxide nanoparticles and copper oxide nanoparticles with the major photosynthetic pigment chlorophyll using ultraviolet-visible, steady state, and time resolved laser induced fluorescence spectroscopy. The steady state fluorescence measurements show that zinc oxide and copper oxide nanoparticles quench the fluorescence of chlorophyll in concentration-dependent manner. The Stern-Volmer plot for the chlorophyll-zinc oxide nanoparticles is linear, and the value of quenching constant has been observed to increase with temperature indicating the possibility of dynamic quenching. A decrease in the lifetime of chlorophyll with increase in the concentration of zinc oxide nanoparticles confirms the involvement of dynamic quenching in the chlorophyll–zinc oxide nanoparticle interaction. In the case of copper oxide nanoparticles, the Stern-Volmer plot deviates from linearity observed in the form of upward curvature depicting the presence of both static and dynamic quenching. In addition, the lifetime of chlorophyll decreases with increase in the concentration of copper oxide nanoparticles displaying the dominance of dynamic quenching in the chlorophyll-copper oxide nanoparticle interaction. The decrease observed in the value of binding constant with increasing temperature and negative values of change in enthalpy, entropy, and Gibb’s free energy indicates that van der Waal and hydrogen bonding are the prominent forces during the interaction of chlorophyll with both zinc oxide and copper oxide nanoparticles and that the process is spontaneous and exothermic. The interaction of zinc oxide and copper oxide nanoparticles with chlorophyll occurs through electron transfer mechanism. The obtained results are useful in understanding the sensitization processes involving chlorophyll and zinc oxide and copper oxide nanoparticles.
关键词: chlorophyll and nanoparticles,molecular interaction,ultraviolet-visible spectroscopy,laser-induced fluorescence spectroscopy,Attenuated total reflectance–Fourier transform infrared spectroscopy,steady state and time resolved fluorescence,X-ray diffraction
更新于2025-09-19 17:15:36
-
Structural and Optical Properties of Silicon Nanowire Arrays Fabricated by Metal Assisted Chemical Etching With Ammonium Fluoride
摘要: Here we report on the metal assisted chemical etching method of silicon nanowires (SiNWs) manufacturing, where the commonly used hydrofluoric acid (HF) has been successfully replaced with ammonium fluoride (NH4F). The mechanism of the etching process and the effect of the pH values of H2O2: NH4F solutions on the structural and optical properties of nanowires were studied in detail. By an impedance and Mott-Schottky measurements it was shown that silver-assisted chemical etching of silicon can be attributed to a facilitated charge carriers transport through Si/SiOx/Ag interface. It was shown that the shape of nanowires changes from pyramidal to vertical with pH decreasing. Also it was established that the length of SiNW arrays non-linearly depends on the pH for the etching time of 10 min. A strong decrease of the total reflectance to 5–10% was shown for all the studied samples at the wavelength <800 nm, in comparison with crystalline silicon substrate (c-Si). At the same time, the intensities of the interband photoluminescence and the Raman scattering of SiNWs are increased strongly in compare to c-Si value, and also they were depended on both the length and the shape of SiNW: the biggest values were for the long pyramidal nanowires. That can be explained by a strong light scattering and partial light localization in SiNWs. Hereby, arrays of SiNWs, obtained by using weakly toxic ammonium fluoride, have great potential for usage in photovoltaics, photonics, and sensorics.
关键词: silicon nanowires,Raman scattering,impedance,photoluminescence,total reflectance
更新于2025-09-19 17:15:36
-
Microsecond Resolved Infrared Spectroelectrochemistry Using Dual Frequency Comb IR Lasers
摘要: A dual infrared frequency comb spectrometer with heterodyne detection has been used to perform time resolved electrochemical attenuated total reflectance surface enhanced infrared absorption spectroscopy (ATR-SEIRAS). The measurement of the potential dependent desorption of a monolayer of a pyridine derivative (4-dimethylaminopyridine, DMAP) with time resolution as high as 4 μs was achieved without the use of step-scan interferometry. An analysis of the detection limit of the method as a function of both time resolution and measurement co-additions is provided and compared to step-scan experiments of an equivalent system. Dual frequency comb spectroscopy is shown to be highly amenable to time-resolved ATR-SEIRAS. Microsecond resolved spectra can be obtained with high spectral resolution and fractional monolayer detection limits in a total experimental duration that is two orders of magnitude less than the equivalent step-scan experiment.
关键词: 4-dimethyamino pyridine (DMAP),noise analysis,Dual frequency comb spectroscopy,time resolved spectroelectrochemistry,RC constant,attenuated total reflectance surface enhanced infrared absorption spectroscopy (ATR-SEIRAS),detection limit
更新于2025-09-19 17:13:59