- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Photodegradation of Fluoxetine Applying Different Photolytic Reactors: Evaluation of the Process Efficiency and Mechanism
摘要: Photolytic degradation of fluoxetine (FLX), a medicine commonly known as Prozac?, was evaluated by using different photochemical processes. The ultraviolet/microwave (UV/MW) process showed higher efficiency in all the aspects evaluated in this study. The energy consumption was equivalent to 1.94 × 10-4 kW h mg-1 L (UV/MW), while in the UV process the value was 1.20 × 10-2 kW h mg-1 L. The degradation kinetics were applied to the FLX, with rate constant (k) = 0.15 ± 0.01 min-1 and linear correlation coefficient (R2) = 0.980 for UV, and k = 6.15 ± 0.08 min-1 and R2 = 0.998 for UV/MW. The FLX degradation of 99.16% (UV/MW 5 min) and 98.90% (UV 120 min) were observed, evidencing higher efficiency for the first process. The monitoring of transformation products (TPs) through chromatographic analysis enabled the identification of 9 TPs, proving that for the UV/MW process, the hydroxylated structures are verified in high quantity.
关键词: photolysis,fluoxetine,transformation products,photochemical reactor,kinetics
更新于2025-11-19 16:56:35
-
Degradation of tetracycline by medium pressure UV-activated peroxymonosulfate process: Influencing factors, degradation pathways, and toxicity evaluation
摘要: This study employed the medium pressure UV/peroxymonosulfate (MPUV/PMS), a new sulfate radical-based advanced oxidation process, to eliminate tetracycline (TTC) in water. At pH = 3.7, initial TTC concentration of 11.25 μM, PMS dosage of 0.2 mM and UV dose of 250 mJ cm-2, 82 % of TTC was degraded by MPUV/PMS. The second-order reaction rate constants of TTC with SO4?- and ?OH were found to be 1.4 × 1010 M-1 s-1 and 6.0 × 109 M-1 s-1, respectively. Radical quenching experiments indicated that ?OH played the major role in the degradation of TTC. Higher PMS dosage (0.1 mM~1.0 mM) and higher pH (3~11) could accelerate the TTC removal. Besides, the presence of Cl- (0.1 mM~5.0 mM) and CO32- (0.05 mM~0.5 mM) could also promote the reaction. Eight transformation products (TPs) were identified, and the potential degradation pathways mainly involved hydroxylation, demethylation and decarbonylation processes. The variation in the genotoxicity was investigated using the umu-test, and the results indicate that the genotoxicity of TTC after the MPUV/PMS treatment significantly increased during the initial stage. In addition, the ecotoxicity and mutagenicity of TTC and its TPs were predicted using quantitative structure-activity relationship (QSAR) analysis, and the results revealed that some TPs could have equivalent and even higher toxicity than TTC. MPUV/PMS showed better performance in TTC degradation in real waters than in Milli-Q water. MPUV/PMS is concluded to be an efficient method for removing TTC, but more attention should be paid to the changes of toxicity during this process.
关键词: Tetracycline,Toxicity,Hydroxyl radical,Sulfate radical,Transformation products
更新于2025-09-23 15:23:52
-
Removal of pharmaceutically active compounds (PhACs) from real membrane bioreactor (MBR) effluents by photocatalytic degradation using composite Ag2O /P-25 photocatalyst
摘要: Pharmaceutically active compounds (PhACs) are emerging pollutants causing serious challenges to wastewater treatment plants due to poor biodegradability. In this study, the enhanced removal of highly recalcitrant and commonly monitored PhACs, carbamazepine (CBZ) and diclofenac (DCF) by heterogeneous photocatalysis was investigated using 5% Ag2O /P-25 photocatalyst. The photocatalyst was characterized by scanning electron microscope (SEM-EDX), Brunauer-Emmett-Teller (BET), and UV-vis diffuse reflectance spectra (UV-DRS). The effects of catalyst dose, initial pollutants concentration, and mineralization during the photocatalytic degradation of PhACs were investigated. The matrix effect was assessed in deionized water (DW) and real membrane bioreactor effluent (RME). Optimal CBZ and DCF removals of 89.10 % and 93.5 %, respectively for 180 min of UV irradiation were achieved at catalyst dosage of 0.4 g L-1 in DW matrix. However, the optimal catalyst dosages for CBZ and DCF in RME matrix were increased by factor 2 and 1.5, respectively, to achieve the same degree of removal. Declining trends of removal rate were observed when initial concentrations of both the PhACs were increased under optimal catalyst dosages, and kinetics seem to fit the Langmuir-Hinshelwood model. Photo-induced holes and ?OH were the dominant oxidation species involved in the photocatalytic degradation of the PhACs. A plausible reusability of 5% Ag2O /P-25 photocatalyst was observed for both the PhACs. Moreover, various aromatic/aliphatic intermediates generated during the photodegradation CBZ were identified using fourier-transform ion cyclotron resonance (FT-ICR) mass spectrometry, and a possible multi-step degradation pathway was proposed. Overall, the removal of PhACs using 5% Ag2O /P-25 photocatalyst showed promising results in real wastewater.
关键词: PhACs,transformation products,Ag2O/P-25 photocatalysts,matrix effect,photocatalytic degradation
更新于2025-09-23 15:23:52
-
Photodegradation of fluazaindolizine in aqueous solution with graphitic carbon nitride nanosheets under simulated sunlight illumination
摘要: The photodegradation of fluazaindolizine (FZDL) under simulated sunlight irradiation was accelerated by the catalysis of graphitic carbon nitride (g-C3N4). Under optimum conditions, such as 5 mg of amount and dispersion, the photodegradation half-life was dramatically enhanced to 2.7 h. More importantly, the pathway of degradation by g-C3N4 was different from both direct photolysis and the catalysis by titanium oxide, with particular negative ions of m/z 221 and 195, corresponding to the cleavage of sulfamide bond and the ring opening of imidazole, respectively. In addition, hydroxyl and superoxide radicals played important roles in photodegradation. The results enriched not only the study of FZDL photodegradation but also the application of g-C3N4. It also suggested the possibility of the water purification by photodegradation for pesticide removal in real life.
关键词: Advanced oxidation processes,Transformation products,Fluazaindolizine,Mass Spectrometery,Photodegradation,Graphitic carbon nitride
更新于2025-09-10 09:29:36
-
Degradation of Paracetamol by an UV/Chlorine Advanced Oxidation Process: Influencing Factors, Factorial Design, and Intermediates Identification
摘要: The combination of a low-pressure mercury lamp and chlorine (UV/chlorine) was applied as an emerging advanced oxidation process (AOP), to examine paracetamol (PRC) degradation under different operational conditions. The results indicated that the UV/chlorine process exhibited a much faster PRC removal than the UV/H2O2 process or chlorination alone because of the great contribution of highly reactive species (?OH, ?Cl, and ClO?). The PRC degradation rate constant (kobs) was accurately determined by pseudo-first-order kinetics. The kobs values were strongly affected by the operational conditions, such as chlorine dosage, solution pH, UV intensity, and coexisting natural organic matter. Response surface methodology was used for the optimization of four independent variables (NaOCl, UV, pH, and DOM). A mathematical model was established to predict and optimize the operational conditions for PRC removal in the UV/chlorine process. The main transformation products (twenty compound structures) were detected by liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS).
关键词: paracetamol,response surface methodology,UV/chlorine,transformation products,reaction kinetics
更新于2025-09-09 09:28:46