- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Tunable passively Q-switched ytterbium-doped fiber laser using MoWS2/rGO nanocomposite saturable absorber
摘要: We demonstrated a tunable Q-switched ytterbium-doped fiber laser (YDFL) using MoWS2/rGO nanocomposite as passive saturable absorber. Further, the Mo1?xWxS2/rGO nanosheets, with x proportion of 0.2, are synthesized using hydrothermal exfoliation technique. The proposed nanocomposite-PVA based thin film is fabricated by mixing the MoWS2/rGO nanosheets with polyvinyl alcohol (PVA). The fabricated thin film is sandwiched between two fiber ferrules to realize the proposed saturable absorber (SA). Further, the proposed MoWS2/rGO-PVA based thin film SA exhibits a fast relaxation time and a high damage threshold which are suitable to realize a Q-switched pulsed laser with a tunable wavelength range of 10 nm that extends from 1028 nm to 1038 nm. For the highest pump power of 267.4 mW, the generated Q-switched pulses exhibit a narrow pulse width of 1.22 μs, the pulse repetition rate of 90.4 kHz, the highest pulse energy of 2.13 nJ and its corresponding average power of 0.193 mW. To the best of author’s knowledge, this is the first realization of a tunable Q-switching fiber laser in a 1 μm wavelength using MoWS2/rGO nanocomposite saturable absorber.
关键词: Saturable absorber,Molybdenum,Tungsten disulfide,Q-switched fiber laser,Transition metal dichalcogenides
更新于2025-11-28 14:24:03
-
Optical Nonlinearity of ZrS2 and Applications in Fiber Laser
摘要: Group VIB transition metal dichalcogenides (TMDs) have been successfully demonstrated as saturable absorbers (SAs) for pulsed fiber lasers. For the group comprising IVB TMDs, applications in this field remain unexplored. In this work, ZrS2-based SA is prepared by depositing a ZrS2 nanostructured film onto the side surface of a D-shaped fiber. The nonlinear optical properties of the prepared SA are investigated, which had a modulation depth of 3.3% and a saturable intensity of 13.26 MW/cm2. In a pump power range of 144–479 mW, the Er-doped fiber (EDF) laser with ZrS2 can operate in the dual-wavelength Q-switching state. The pulse duration declined from 10.0 μs down to 2.3 μs. The single pulse energy reached 53.0 nJ. The usage of ZrS2 as a SA for pulse generation in fiber lasers is presented for the first time. Compared to the experimental results of dual-wavelength Q-switched fiber lasers with two-dimensional (2D) materials, our laser performance was better. Our work indicates that the group comprising IVB TMD ZrS2 has bright prospects for nonlinear optical applications.
关键词: transition metal dichalcogenides,saturable absorbers,ZrS2
更新于2025-11-28 14:24:03
-
Molybdenum tungsten disulphide (MoWS <sub/>2</sub> ) as a saturable absorber for a passively Q-switched thulium/holmium-codoped fibre laser
摘要: In this work, a passively Q-switched Thulium/Holmium-doped fibre laser (THDFL) using a molybdenum tungsten disulphide (MoWS2) saturable absorber (SA) is proposed and demonstrated. The MoWS2 nanosheets are prepared by hydrothermal exfoliation and then suspended in a polyvinyl alcohol (PVA) thin film host. Q-switching of the THDFL at a maximum 1550 nm pump power of 445.2 mW gives a maximum repetition rate and minimum pulse width of 36.3 kHz and 2.8 μs with a corresponding pulse energy of 86.4 nJ and peak power of 31.1 mW. The MoWS2 based Q-switched THDFL’s output has a very high signal-to-noise value of ~ 62.2 dB which strongly indicates that the laser is working in a stable operation. To the best of our knowledge, this is the first demonstration of MoWS2 as a passive SA in a THDFL for operation in the 2.0 μm region. The proposed laser would have significant medical and sensing applications, particularly at the biologically active 2.0–2.1 μm regions.
关键词: thulium/holmium-doped fibre,transition metal dichalcogenides,Saturable absorber,Q-switching
更新于2025-11-28 14:23:57
-
Chemically exfoliated 1T-phase transition metal dichalcogenide nanosheets for transparent antibacterial applications
摘要: Two-dimensional transition metal dichalcogenides (TMDs) are promising materials for a range of applications owing to their intriguing properties including the excellent electrical performance and biocompatibility. Strikingly, 1T-phase TMDs have attracted significant interest based on their metallic properties with octahedral metal coordination where the phase transition can occur from the semiconducting 2H-phase to metallic 1T-phase by chemical intercalation-induced exfoliation process. In this regard, 1T-phase TMDs have great potential in antibacterial agents in terms of effective charge transfer between the bacterial membrane and TMD nanosheets while their biological interactions have been underexplored. To bridge this gap, we herein investigate the antibacterial activities of various 1T-phase TMDs including molybdenum disulfide (MoS2), tungsten disulfide (WS2), and molybdenum diselenide (MoSe2) toward Gram-negative bacteria Escherichia coli that exhibit the reduction of bacterial viability caused by the production of reactive oxygen species, oxidation of glutathione and other chemical functionalities. The effective antibacterial capacity of metallic 1T-phase TMDs is observed and their bactericidal mechanisms are investigated in terms of their electrical conductivity and chemical oxidation property that induce the charge transfer from bacterial membrane to TMDs leading to the continuous disruption of bacteria and loss of cellular components. Furthermore, we demonstrated the transparent antibacterial films consisting of 1T-phase TMDs in which TMD nanosheets are immobilized on the surfaces and their basal planes play an important role in antibacterial actions for practical biomedical applications. Thus, our findings provide new insights into the great potential of 1T-phase TMDs as promising building blocks for antibacterial surfaces and contribute to the widespread use of 1T-phase TMDs for practical biomedical applications.
关键词: 1T-phase,charge transfer,antibacterial activity,oxidative stress,transition metal dichalcogenide
更新于2025-11-21 11:08:12
-
Colloidally synthesized defect-rich $$\hbox {MoSe}_{2}$$ MoSe 2 nanosheets for superior catalytic activity
摘要: Transition metal dichalcogenide (TMD) nanosheets (NSs) with defect-rich and vertically aligned edges are highly advantageous for various catalytic applications. However, colloidal synthesis of defect-rich NSs with thickness variation has been a challenging task. Here, we report a colloidal synthesis of 2H-MoSe2 NSs having a large number of defects and vertically aligned edges, where the thickness is varied by changing the amount of coordinating solvent. The Se-vacancies in these NSs have introduced defect sites which are corroborated by the presence of additional vibration modes in Raman spectra. These NSs exhibit electrocatalytic hydrogen evolution reaction performances with a low overpotential (210–225 mV) at 10 mA cm?2 current density and a small Tafel slope (54–68 mV per decade). Moreover, these MoSe2 NSs are also employed as counter electrodes (CEs) for the fabrication of dye sensitized solar cells via a cost-effective and simplified procedure. The power conversion efficiencies of 7.02 ± 0.18%, comparable with Pt CE (7.84 ± 0.10%) could be routinely achieved. These results demonstrate a novel synthetic strategy to prepare layered TMDs with superior catalytic applications.
关键词: counter electrode,Transition metal dichalcogenides,dye sensitized solar cells,MoSe2 nanosheets,hydrogen evolution reaction
更新于2025-11-19 16:56:35
-
Laser-induced synthesis and photocatalytic properties of hybrid organic–inorganic composite layers
摘要: A laser-based method was developed for the synthesis and simultaneous deposition of multicomponent hybrid thin layers consisting of nanoentities, graphene oxide (GO) platelets, transition metal oxide nanoparticles, urea, and graphitic carbon nitride (g-C3N4) for environmental applications. The photocatalytic properties of the layers were tested through the degradation of methyl orange organic dye probing molecule. It was further demonstrated that the synthesized hybrid compounds are suitable for the photodegradation of chloramphenicol, a widely used broad-spectrum antibiotic, active against Gram-positive and Gram-negative bacteria. However, released in aquatic media represents a serious environmental hazard, especially owing to the formation of antibiotic-resistant bacteria. The obtained results revealed that organic, urea molecules can become an alternative to noble metals co-catalysts, promoting the separation and transfer of photoinduced charge carriers in catalytic composite systems. Laser radiation induces the reduction of GO platelets and the formation of graphene-like material. During the same synthesis process, g-C3N4 was produced, by laser pyrolysis of urea molecules, without any additional heat treatment. The layers exhibit high photocatalytic activity, being a promising material for photodegradation of organic pollutants in wastewater.
关键词: transition metal oxide nanoparticles,urea,photocatalytic properties,hybrid organic–inorganic composite layers,graphene oxide,graphitic carbon nitride,methyl orange,laser-based synthesis,chloramphenicol
更新于2025-11-14 17:04:02
-
Anisotropic infrared light emission from quasi-one-dimensional layered TiS<sub>3</sub>
摘要: Atomically thin semiconductors hold great potential for nanoscale photonic and optoelectronic devices because of their strong light absorption and emission. Despite progress, their application in integrated photonics is hindered particularly by a lack of stable layered semiconductors emitting in the infrared part of the electromagnetic spectrum. Here we show that titanium trisulfide (TiS3), a layered van der Waals material consisting of quasi-one-dimensional chains, emits near infrared light centered around 0.91 eV (1360 nm). Its photoluminescence exhibits linear polarization anisotropy and an emission lifetime of 210 ps. At low temperature, we distinguish two spectral contributions with opposite linear polarizations attributed to excitons and defects. Moreover, the dependence on excitation power and temperature suggests that free and bound excitons dominate the excitonic emission at high and low temperatures, respectively. Our results demonstrate the promising properties of TiS3 as a stable semiconductor for optoelectronic and nanophotonic devices operating at telecommunication wavelengths.
关键词: infrared luminescence,transition metal trichalcogenides,titanium trisulfide,linear polarization anisotropy,layered semiconductors
更新于2025-11-14 14:32:36
-
Enlightening developments in 1,3-P,N-ligand-stabilized multinuclear complexes: A shift from catalysis to photoluminescence
摘要: 1,3-P,N-ligands provide the ideal spatial separation to facilitate homo and hetero metal-metal interactions to access multinuclear complexes. The rich chemistry of such complexes includes applications in coordination chemistry, metal-activation and (cooperative) catalysis. However, it has been especially the fruitful combination in photoluminescent P,N-coinage metal complexes which has renewed interest in these ligands. While the field classically focused on dinuclear species, now also coinage metal clusters have been studied for use in catalysis and photophysical applications. Reviewed are recent developments from 2009 to mid-2017.
关键词: P,N-ligands,Coinage metal clusters,Photoluminescence,Transition metal complexes,Homogeneous catalysis,Metal-metal bonds
更新于2025-09-23 15:23:52
-
Dense Electron-Hole Plasma Formation and Ultra-Long Charge Lifetime in Monolayer MoS <sub/>2</sub> via Material Tuning
摘要: Many-body interactions in photoexcited semiconductors can bring about strongly-interacting electronic states, culminating in the fully-ionized matter of electron-hole plasma (EHP) and electron-hole liquid (EHL). These exotic phases exhibit unique electronic properties, such as metallic conductivity and metastable high photoexcitation density, which can be the basis for future transformative applications. However, the cryogenic condition required for its formation has limited the study of dense plasma phases to a purely academic pursuit in a restricted parameter space. This paradigm can potentially change with the recent experimental observation of these phases in atomically thin MoS2 and MoTe2 at room temperature. A fundamental understanding of EHP and EHL dynamics is critical for developing novel applications on this versatile layered platform. In this work, we studied the formation and dissipation of EHP in monolayer MoS2. Unlike previous results in bulk semiconductors, our results reveal that electro-mechanical material changes in monolayer MoS2 during photoexcitation play a significant role in dense EHP formation. Within the free-standing geometry, photoexcitation is accompanied by an unconstrained thermal expansion, resulting in a direct-to-indirect gap electronic transition at a critical lattice spacing and fluence. This dramatic altering of the material’s energetic landscape extends carrier lifetimes by 2 orders of magnitude and allows the density required for EHP formation. The result is a stable dense plasma state that’s sustained with modest optical photoexcitation. Our findings pave the way for novel applications based on dense plasma states in 2D semiconductors.
关键词: 2D materials,Dense Electron-Hole Plasma,Bandgap Renormalization,MoS2,Transition Metal Dichalcogenides,Direct to Indirect Bandgap Transition
更新于2025-09-23 15:23:52
-
Sub-5 nm Ultra-Fine FeP Nanodots as Efficient Co-Catalysts Modified Porous g-C <sub/>3</sub> N <sub/>4</sub> for Precious-Metal-Free Photocatalytic Hydrogen Evolution under Visible Light
摘要: Sub-5 nm ultra-fine iron phosphide (FeP) nano-dots-modified porous graphitic carbon nitride (g-C3N4) heterojunction nanostructures are successfully prepared through the gas-phase phosphorization of Fe3O4/g-C3N4 nanocomposites. The incorporation of zero-dimensional (0D) ultra-small FeP nanodots co-catalysts not only effectively facilitate charge separation but also serve as reaction active sites for hydrogen (H2) evolution. Herein, the strongly coupled FeP/g-C3N4 hybrid systems are employed as precious-metal-free photocatalysts for H2 production under visible-light irradiation. The optimized FeP/g-C3N4 sample displays a maximum H2 evolution rate of 177.9 μmol h?1 g?1 with the apparent quantum yield of 1.57% at 420 nm. Furthermore, the mechanism of photocatalytic H2 evolution using 0D/2D FeP/g-C3N4 heterojunction interfaces is systematically corroborated by steady-state photoluminescence (PL), time-resolved PL spectroscopy, and photoelectrochemical results. Additionally, an increased donor density in FeP/g-C3N4 is evidenced from the Mott-Schottky analysis in comparison with that of parent g-C3N4, signifying the enhancement of electrical conductivity and charge transport owing to the emerging role of FeP. The density functional theory calculations reveal that the FeP/g-C3N4 hybrids could act as a promising catalyst for the H2 evolution reaction. Overall, this work not only paves a new path in the engineering of monodispersed FeP-decorated g-C3N4 0D/2D robust nanoarchitectures but also elucidates potential insights for the utilization of noble-metal-free FeP nanodots as remarkable co-catalysts for superior photocatalytic H2 evolution.
关键词: transition-metal phosphides,g-C3N4,co-catalysts,precious-metal-free,photocatalytic H2 production
更新于2025-09-23 15:23:52