- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Polydopamine-Coated Gold Core/Hollow Mesoporous Silica Shell Particles as a Nanoplatform for Multimode Imaging and Photothermal Therapy of Tumors
摘要: It is highly desirable to develop a new hybrid nanoplatform that integrates diagnosis and treatment elements for effective theranostics of tumors. Herein, we have skillfully designed a nanoplatform of polydopamine (PDA)-coated and perfluorohexane (PFH)-filled gold core/hollow mesoporous silica shell (Au@mSiO2-PFH-PDA, ASPP for short) particles for photoacoustic (PA)/ultrasound (US)/computed tomography (CT)/thermal imaging and photothermal therapy (PTT) of tumors. In this work, we first synthesized Au seed particles with a diameter of 15.8 nm using a sodium citrate reduction method, and coated Au seeds with polyvinylpyrrolidone for further growth of solid silica shell/mesoporous silica shell onto the Au seeds. After treatment via selective etching to remove solid silica shell, amination of surface of the particles, and filling of PFH into the internal cavity of the spheres with a diameter of 182.1 nm, PDA coating was performed to render the particles with an external shell thickness of 15.1 nm. The formed hybrid particles with a size of 212.2 nm are colloidally stable and exhibit good cytocompatibility, and display excellent PA/US/CT/thermal imaging property due to the co-presence of PDA, PFH, and Au nanoparticles. Furthermore, the PDA coating renders the platform with a photothermal conversion efficiency of 61.2%, enabling effective photothermal ablation of cancer cells in vitro and a xenografted 4T1 tumor model in vivo under irradiation with an 808 nm laser. More importantly, in the primary 4T1 tumor model, intratumoral injection of the ASPP and irradiation with an 808 nm laser can also completely inhibit the occurrence lung metastasis induced by the 4T1 tumor. The as-prepared hybrid nanoplatform may hold a great promise to be adopted for multimode imaging and PTT of tumors and inhibition of tumor metastasis.
关键词: Tumor metastasis inhibition,Multimode imaging,Photothermal therapy,Polydopamine NPs,Hollow mesoporous silica,Surface modification
更新于2025-09-23 15:22:29
-
Smart Assembled Human Serum Albumin Nanocarrier Enhanced Breast Cancer Treatment and Antitumor Immunity by Chemo- photothermal Therapy
摘要: High invasion and metastasis are the major obstacles to successful breast cancer therapy. Indocyanine green (ICG), a photosensitizer for photothermal therapy (PTT), shows potent anticancer efficacy when combined with the chemotherapeutic drug doxorubicin (DOX). Human serum albumin (HSA), a biocompatible carrier material, has been successfully used for the delivery of paclitaxel (Abraxane). In addition, there are ICG functional binding regions in HSA. Thus, a smart assembled nanoplatform (DI@HSA NPs) was constructed to achieve the synergistic effects of chemo-photothermal therapy against breast cancer. Compared to free ICG and free DOX, DI@HSA NPs showed satisfactory stability and exhibited an enhanced tumor targeting capacity. The mild hyperthermia generated by DI@HSA NPs can not only cause tumor photothermal ablation and promote the uptake of DI@HSA NPs by 4T1 cells, but also protect the healthy tissues nearby the tumor from overheating injury. More importantly, DI@HSA NPs greatly amplified the infiltration of CD4+ T cells and CD8+ T cells, resulting in inhibited tumor growth and metastasis. DI@HSA NPs, as a simple biocompatible nanoagent, showed excellent inhibition of breast cancer growth and metastasis by chemo-photothermal therapy, providing a potential strategy for the future therapy of breast cancer.
关键词: chemo-photothermal therapy,human serum albumin,tumor metastasis,antitumor immunity
更新于2025-09-23 15:19:57
-
Multiple Iterations of Magnetic Resonance-Guided Laser Interstitial Thermal Ablation of Brain Metastases: Single Surgeon's Experience and Review of the Literature
摘要: BACKGROUND: Prior treatment with magnetic resonance-guided, laser-induced thermal therapy (LITT) is widely assumed not to be a contraindication for further treatment of brain lesions, including further iterations of LITT. However, the safety and efficacy of repeat LITT treatments have never been formally investigated. OBJECTIVE: To evaluate treatment with multiple iterations of LITT. METHODS: All patients treated with LITT at least twice at our institution were included in the study. Outcomes and neurological examinations from before and after surgery were retrospectively examined from clinic notes. Perilesonal edema was determined at various timepoints using volumetric data derived from manual tracings of fluid-attenuated inversion recovery (FLAIR) enhancement on magnetic resonance imaging (MRI). Finally, a literature review of prior cases of repeat LITT was performed. RESULTS: A total of 9 patients underwent 18 treatments with LITT; all but 1 of whom were treated for metastatic brain lesions. One patient had a transient cerebrospinal fluid leak, whereas a second patient had a superficial wound infection, both of which resolved with standard medical care. The remaining 7 patients tolerated all LITT procedures without complication. Analysis of perilesional edema volume demonstrated a correlation with the amount of energy delivered during LITT. Literature review found 5 published papers describing 9 patients who underwent LITT more than once, the majority of whom tolerated repeat LITT well. CONCLUSION: LITT is a safe and promising treatment modality and may be used multiple times without issue. There appears to be an association between the amount of energy delivered during a LITT session and the degree of postoperative perilesional edema.
关键词: Brain tumor,Metastasis,Magnetic resonance laser-induced thermal therapy,Minimally invasive surgery,Tumor recurrence
更新于2025-09-12 10:27:22
-
Magnetic Supramolecular Nanofibers of Gold Nanorods for Photothermal Therapy
摘要: Molecular aggregation triggered by physical and chemical stimuli and based on multiple noncovalent interactions has immense potential utility for modeling and mimicking biological systems and for the diagnosis and treatment of degenerative diseases. Herein the preparation, properties, and biological activities of a new type of organic–inorganic hybrid supramolecular nanofiber composed of gold nanorods, mitochondrion-targeting-peptide-coated iron oxide nanoparticles, and hyaluronic-acid (HA)-modified β-cyclodextrin is reported. These photothermal nanofibers, which grew along the direction of the geomagnetic field, induced severe mitochondrial damage in human adenocarcinoma cells (A549); and, more strikingly, the nanofibers greatly suppress metastasis and clear A549 cells in tumor-bearing mice upon irradiation with a near-infrared laser. The ability to recruit HA-receptor-expressing tumor cells and to target mitochondria, as well as the high photothermal conversion efficiency imparted by the gold nanorods, makes these supramolecular nanofibers a promising nanotherapy for cancer in general and metastasis-related malignancy in particular.
关键词: gold nanorods,supramolecular nanofibers,photothermal therapy,cyclodextrin,tumor metastasis
更新于2025-09-10 09:29:36
-
A biomimetic nanoreactor for synergistic chemiexcited photodynamic therapy and starvation therapy against tumor metastasis
摘要: Photodynamic therapy (PDT) is ineffective against deeply seated metastatic tumors due to poor penetration of the excitation light. Herein, we developed a biomimetic nanoreactor (bio-NR) to achieve synergistic chemiexcited photodynamic-starvation therapy against tumor metastasis. Photosensitizers on the hollow mesoporous silica nanoparticles (HMSNs) are excited by chemical energy in situ of the deep metastatic tumor to generate singlet oxygen (1O2) for PDT, and glucose oxidase (GOx) catalyzes glucose into hydrogen peroxide (H2O2). Remarkably, this process not only blocks the nutrient supply for starvation therapy but also provides H2O2 to synergistically enhance PDT. Cancer cell membrane coating endows the nanoparticle with biological properties of homologous adhesion and immune escape. Thus, bio-NRs can effectively convert the glucose into 1O2 in metastatic tumors. The excellent therapeutic effects of bio-NRs in vitro and in vivo indicate their great potential for cancer metastasis therapy.
关键词: tumor metastasis,biomimetic nanoreactor,starvation therapy,synergistic therapy,photodynamic therapy
更新于2025-09-09 09:28:46
-
Simultaneous <i>in vivo</i> optical quantification of key metabolic and vascular endpoints reveals tumor metabolic diversity in murine breast tumor models
摘要: Therapeutically exploiting vascular and metabolic endpoints becomes critical to translational cancer studies because altered vascularity and deregulated metabolism are two important cancer hallmarks. The metabolic and vascular phenotypes of three sibling breast tumor lines with different metastatic potential are investigated in vivo with a newly developed quantitative spectroscopy system. All tumor lines have different metabolic and vascular characteristics compared to normal tissues, and there are strong positive correlations between metabolic (glucose uptake and mitochondrial membrane potential) and vascular (oxygen saturations and hemoglobin concentrations) parameters for metastatic (4T1) tumors but not for micro-metastatic (4T07) and non-metastatic (67NR) tumors. A longitudinal study shows that both vascular and metabolic endpoints of 4T1 tumors increased up to a specific tumor size threshold beyond which these parameters decreased. The synchronous changes between metabolic and vascular parameters, along with the strong positive correlations between these endpoints suggest that 4T1 tumors rely on strong oxidative phosphorylation in addition to glycolysis. This study illustrates the great potential of our optical technique to provide valuable dynamic information about the interplay between the metabolic and vascular status of tumors, with important implications for translational cancer investigations.
关键词: tumor metabolism,Optical spectroscopy,vascular microenvironment,tumor metastasis
更新于2025-09-04 15:30:14