修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

777 条数据
?? 中文(中国)
  • Photoluminescence properties of Er3+/Yb3+ doped ZrO2 coatings formed by plasma electrolytic oxidation

    摘要: In the present work, down- and up-conversion photoluminescence properties of Er3+/Yb3+ doped ZrO2 coatings formed by plasma electrolytic oxidation of zirconium in electrolyte containing Er2O3 and Yb2O3 particles were investigated. Down-conversion PL analysis shows that emission spectra of ZrO2:Er3+/Yb3+ coatings excited with 280 nm radiation are composed of broad PL band related to ZrO2 host and bands assigned to f-f transitions of Er3+. The main PL emission bands of Er3+ at around 548 nm and 560 nm are related to 4S3/2→4I15/2 transition. PL excitation spectra monitored at 548 nm feature broad band in the region from 250 nm to 350 nm which is associated with the electron transfer transition from 2p orbital of O2? to 4f orbital of Er3+ and transitions of ZrO2. On the other hand, bands in PL excitation spectra ranging from 350 nm to 535 nm are related to 4f transitions of the Er3+ from the ground state 4I15/2 to higher energy levels. Down-conversion PL intensity decreases with increasing concentration of Yb3+ in coating due to energy transfer from Er3+ to Yb3+. ZrO2:Er3+/Yb3+ coatings show intense green (4S3/2→4I15/2) and red (4F9/2→4I15/2) up-conversion PL emission under the excitation with a 980 nm diode laser. With increasing Yb3+ concentration red up-conversion PL intensity increases more rapidly with respect to green emission, because red up-conversion PL intensity strongly depends on Yb3+ concentration, i.e. 4F9/2 state of Er3+ is directly excited by energy transfer from excited Yb3+.

    关键词: up-conversion,Photoluminescence,Er3+/Yb3+,Down-conversion,Plasma electrolytic oxidation

    更新于2025-09-23 15:23:52

  • Image Color Conversion by Illumination

    摘要: We developed a software program to imitate the color of an object within the range of sRGB on a PC display. The obtained colors were converted from the picture information taken under a white light source, such as D65. Other, arbitrary light sources such as natural sunlight or standard illuminants, could be used in addition to the test illumination. Judging from the sample of the converted pictures, the software functions quite well.

    关键词: Simulation,Picture,Color conversion,Spectrum,Illumination,D65

    更新于2025-09-23 15:23:52

  • Phase Conjugation and Mode Conversion in Stimulated Parametric Down-Conversion with Orbital Angular Momentum: a Geometrical Interpretation

    摘要: We report on an experiment that investigates the spatial mode conversion in the process of parametric down-conversion seeded by a light beam in a superposition of orbital angular momentum modes. This process is interpreted in terms of a geometric representation of first-order spatial modes in a Poincaré sphere, providing an intuitive image of the phase conjugation and the topological charge conservation. We also make a comparison with the analogous phenomenon for optical parametric oscillators.

    关键词: Orbital angular momentum,Parametric down-conversion,Optics,Phase conjugation

    更新于2025-09-23 15:23:52

  • Edge/Defect-rich, Metallic, and Oxygen-heteroatom-doped WS2 Superstructure with Superior Electrocatalytic Performance for Green Solar Energy Conversion

    摘要: Two-dimensional tungsten sulfide is widely applied in electrocatalysis field. However, WS2 possesses catalytic active sites located at the layer edge and an inert surface for catalysis. Therefore, increasing the exposure of active sites at the edge and effectively activating the inert sites on the surface is important challenges. Here, we synthesize edge/defect-rich and oxygen-heteroatom-doped WS2 (ED-O-WS2) superstructure. The power-conversion efficiency (PCE) of dye-sensitized solar cells (DSCs) based on ED-O-WS2 counter electrode reach 10.36% (under 1 Sun, AM 1.5, 100 mW cm?2) and 11.19% (under 40 mW cm?2). These values are, to our knowledge, the highest reported efficiency for DSCs based on Pt-free counter electrodes in I3-/I- electrolytes. Analysis of micro-nano structure and electrocatalytic mechanism indicate that ED-O-WS2 exhibit metallic properties in the electrolyte, and that rich edge/defect and oxygen doping in ED-O-WS2 play an important role in improving the catalytic activity of WS2. Moreover, ED-O-WS2 displays better catalytic reversibility for I3-/I- electrolytes than that of noble metal Pt.

    关键词: WS2,green solar energy conversion,dye-sensitized solar cells,counter electrode

    更新于2025-09-23 15:23:52

  • Fabrication of bilayered attapulgite for solar steam generation with high conversion efficiency

    摘要: Solar steam generation has been attracting wide attention for boosting the evolution of solar-energy-harvesting technology. Here, we demonstrate the fabrication of a novel bilayer photothermal material based on attapulgite/poly acrylamide composite (APAC), which was prepared by the solution polymerization of acrylamide (AM) in the presence of attapulgite using N, N’ - Methylene bisacrylamide (MBA) as a crosslinker, for efficient solar steam generation. The APAC shows better thermal stability with a decomposition temperature of 250 oC, good mechanical property with a compress strength of up to 125 KPa at 75% strain and a low apparent density (0.0191 g·cm-3) with abundant porosity accompanying with a low thermal conductivity (0.07 W m-1 K-1). To enhance the light absorption of APAC, a thin carbon layer was created on the surface of APAC via a facile flame treatment. Under our conditions, the bilayered APAC shows a high vapor rate of 1.2 kg m-2 h-1 under 1 sun illumination, equal to 85% solar-to-vapor efficiency. With the merits of cost-efficient, scalable manufacture, high solar energy conversion efficiency, the APAC may hold the great potential as high-performance photothermal materials for solar energy generation.

    关键词: conversion efficiency,Solar steam generation,attapulgite,bilayer

    更新于2025-09-23 15:23:52

  • Surface-Immobilized Conjugated Polymers Incorporating Rhenium Bipyridine Motifs for Electrocatalytic and Photocatalytic CO <sub/>2</sub> Reduction

    摘要: The solar-driven conversion of CO2 to value-added products provides a promising route for solar energy storage and atmospheric CO2 remediation. In this report, a variety of supporting electrode materials were successfully modified with a [2,2′-bipyridine]-5,5′-bis(diazonium) rhenium complex through a surface-localized electropolymerization method. Physical characterization of the resulting multilayer films confirms that the coordination environments of the rhenium bipyridine tricarbonyl sites are preserved upon immobilization and that the polymerized catalyst moieties exhibit long-range structural order with uniform film growth. UV?vis studies reveal additional absorption bands in the visible region for the polymeric films that are not present in the analogous rhenium bipyridine complexes. Electrochemical studies with modified graphite rod electrodes show that the electrocatalytic activity of these films increases with catalyst loading up to an optimal value, beyond which electron and mass transport through the material become rate-limiting. Electrocatalytic studies performed at ?2.25 V vs Fc/Fc+ for 2 h reveal CO production with faradaic efficiencies and turnover numbers up to 99% and 3606, respectively. Photocatalytic studies of the modified TiO2 devices demonstrate enhanced activity at low catalyst loadings, with turnover numbers up to 70 during 5 h of irradiation.

    关键词: metallopolymers,surface modification,photocatalysis,rhenium bipyridine,solar energy conversion,electrocatalysis

    更新于2025-09-23 15:23:52

  • Unique oblate-like ZnWO4 nanostructures for electrochemical energy storage performances

    摘要: Unique ZnWO4 oblate nanospheres (ZWO-ONSs) deposited on Nickel foam (Ni foam) are successfully prepared via facile hydrothermal route. The ZWO-ONSs show high specific surface area of 89.47 m2g-1. The as-prepared nanostructures tested in 3 M KOH aqueous solution, perform excellent electrochemical performances showing specific capacity of 1198 Fg-1 at 1 Ag-1, and high retention rate cyclic stability 96.56% after 1000 cycles at 10 Ag-1. Distinctive binary metal oxide nanoarchitectures are dynamic material for energy storage systems.

    关键词: Supercapacitors,ZnWO4,Oblate-like nanostructures,Structural,Energy storage and conversion

    更新于2025-09-23 15:23:52

  • Enhanced solar induced photo-thermal synergistic catalytic CO2 conversion by photothermal material decorated TiO2

    摘要: Semiconductor material with narrow bandgap is an ideal photo-thermal conversion material because of its high absorption intensity in infrared region. Here, CuS/TiO2 composites were synthesized based on UV-responsive TiO2 compound with narrow bandgap semiconductor material CuS for CO2 conversion under full-spectrum irradiation. The experimental results showed that 2% CuS/TiO2 exhibited higher photocatalytic CO2 reduction efficiency due to the solar induced photo-thermal synergistic effect. CuS can absorb and convert infrared light into heat energy, which promotes the utilization range of sunlight for CO2 conversion. In-situ Fourier transform infrared spectroscopy (FT–IR) was used to explain the photocatalytic mechanism at the molecular level. This work suggested a feasible way for integrated utilization of solar energy by narrow bandgap semiconductor compounds with TiO2 to convert CO2.

    关键词: TiO2,photocatalysis,solar,CuS,CO2 conversion

    更新于2025-09-23 15:23:52

  • Composite up-conversion luminescent films containing a nanocellulose and SrF2:Ho particles

    摘要: The synthesis of up-conversion luminescent composite films based on a nanocellulose matrix containing Sr1-xHoxF2+x particles was proposed. The combination of sulfuric acid hydrolysis and ultrasonication allowed us to synthesize a series of stable nanocellulose dispersions from various raw materials (powdered sulphate bleached wood pulp, Blue Ribbon filter paper, and microcrystalline cellulose Avicel). The size distribution of cellulose nanoparticles in the aqueous dispersions was determined. Cellulose nanocrystals (CNC) and/or cellulose nanofibrils (CNF) dispersions were used to fabricate thin films by solution casting followed by solvent evaporation under ambient conditions. The size and shape of cellulose nanoparticles, surface morphology, crystallinity index of nanocellulose, polymerization degree, and optical properties were studied. By mixing aqueous dispersions of CNC with up-conversion Sr1-xHoxF2+x particles, homogeneous suspensions were obtained. Finally, a solution casting technique was used to prepare CNC/Sr1-xHoxF2+x and CNC/CNF/Sr1-xHoxF2+x nanocomposite films. CNC/CNF dispersions were utilized for the production of flexible, durable, transparent composite films. The synthesized nanocomposites demonstrated intense red luminescence upon Ho3+ excitation by 1912 nm laser radiation. The obtained up-conversion luminescent composite films can be considered as a promising material for photonics, in particular for near-IR laser labeling and radiation visualization, luminescent sensorics.

    关键词: Nanocomposites,Up-conversion luminescent films,Cellulose nanofibrils,Cellulose nanocrystals,SrF2:Ho3+

    更新于2025-09-23 15:23:52

  • Ag-graphene/PEG composite phase change materials for enhancing solar-thermal energy conversion and storage capacity

    摘要: In view of the excellent characteristic of thermal energy storage, phase change materials (PCMs) are of great significance for improving the efficiency of solar thermal energy utilization. However, the direct thermal effect of visible-light (40% of solar radiation) is very low. In order to improve the capabilities of visible-light absorption and photothermal conversion, we reported novel and efficient sunlight-driven PCMs based on polyethylene glycol (PEG) supported by Ag nanoparticle-functionalized graphene nanosheets (Ag–GNS). The multifolded layered structure provides Ag–GNS a large surface area to support PEG for achieving the shape stability before and after phase transition. Meanwhile, based on the local surface plasma resonance effect of Ag, Ag has high visible light selective absorption and infrared reflectance, which can give Ag–GNS enhanced light absorption capacity and reduced thermal radiation. So Ag–GNS/PEG can harvest sunlight and convert light to thermal energy with significantly higher efficiency (η = 88.7–92.0%). Moreover, Ag–GNS/PEG composites exhibit enhanced thermal conductivities (49.5–95.3%), high energy storage densities (> 166.1 J/g), high thermal energy storage/release rates and outstanding form-stable properties. Therefore, this novel sunlight-driven composite can be potentially used for clean and efficient utilization of solar energy.

    关键词: Sunlight-driven,Photothermal conversion,Phase change materials,Ag–GNS

    更新于2025-09-23 15:23:52