- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Broad-band emission and color tuning of Eu3+-doped LiCa2SrMgV3O12 phosphors for warm white light-emitting diodes
摘要: In this study, series of Eu3+-doped LiCa2SrMgV3O12 (LCSMV) phosphors with broad-band emission and color tunable feature were prepared via solid phase reaction. The X-ray diffraction (XRD) and scanning electron microscopy (SEM) results presented a pure cubic phase product with micron-sized and homogeneous distribution of element. Their spectroscopic properties were investigated systematically by photoluminescence excitation (PLE) and emission (PL) spectra, temperature-dependent PL spectra and luminescence decay curves. The LCSMV phosphors displayed a strong absorption to ultraviolet light and a broad cyan emission. Moreover, in Eu3+-doped LCSMV phosphors, Eu3+ ion characteristic emissions at 589, 610, 651 and 705 nm, attributing to the 5D0→7F1, 7F2, 7F3 and 7F4 transitions, were observed. Along with Eu3+ ion concentrations increasing, the emission colors could be readily tuned from cyan to orange and the decay lifetimes of (VO4)3- became shorter. Meanwhile, electric dipole-dipole interaction was responsible to energy migration from (VO4)3- groups to Eu3+ ions. Further, the quantum efficiency (QE) values were estimated to be 32.5% for LCSMV host and 39.3% for LCSMV: 0.01Eu3+ sample. Finally, a LED lamp was prepared by integrating the blend of the LCSMV: 0.01Eu3+ phosphors and commercial blue-emitting BaMgAl10O17:Eu2+ phosphors with NUV chip (365 nm) and exhibited warm white light (CCT = 3655 K, Ra = 90), which may be applied in lighting and display field.
关键词: Self-activated luminescence,Color tunable,Light-emitting diode,Vanadate phosphor,Color rendering index,Broad-band emission
更新于2025-11-20 15:33:11
-
Synthesis, energy transfer and multicolor luminescent property of Eu3+-doped LiCa2Mg2V3O12 phosphors for warm white light-emitting diodes
摘要: In this study, Eu3+-doped LiCa2Mg2V3O12 (LCMVO) phosphors with multicolor luminescent property were prepared by the solid phase reaction. Their structure, morphology and luminescent property were studied systematically by X-ray diffraction, scanning electron microscope and photoluminescence spectra. The LCMVO phosphors showed pure cubic crystal structure with space group (3Ia d ) and irregular spherical morphology. The excitation spectra showed a strong absorption to ultraviolet light. Under the excitation wavelength at 360 nm, they exhibited a cyan emission with a luminescence center at 520 nm. When Eu3+ ions were doped into LCMVO system, the Eu3+ characteristic emissions were also observed and the emission colors were tuned from cyan to orange via adjusting Eu3+ ion concentration. Further, electric dipole-quadrupole interaction and luminescence decay curves were adopted to explain the energy transfer from (VO4)3- to Eu3+. The emission spectra of as-obtained phosphors at different temperature were measured to evaluate their thermal stability. The quantum efficiency values were measured to be 42.5% for LCMVO host and 38.6% for LCMVO: 0.01Eu3+ sample. The final prepared LED lamp showed easeful warm white light with suitable Ra of 89 and CCT of 3847 K, respectively. These results suggest LCMVO phosphors may be applied in near ultraviolet chip-excited white light-emitting diodes.
关键词: energy transfer,multicolor luminescent,self-activated luminescence,excitation and emission spectra,vanadate phosphor,UV-LED
更新于2025-11-20 15:33:11
-
Synthesis, energy transfer mechanism, and tunable emissions of novel Na3La(VO4)2:Re3+ (Re3+ = Dy3+, Eu3+, and Sm3+) vanadate phosphors for near-UV-excited white LEDs
摘要: In this study, novel Eu3+-, Dy3+-, and Sm3+-activated Na3La(VO4)2 phosphors were synthesized using a solid state reaction method. X-ray diffraction analysis results indicated that the Na3La(VO4)2 phosphors had an orthorhombic crystal structure with the Pbc21 space group. There were two different La(1)O8 and La(2)O8 polyhedra with high asymmetry in the crystal structure. Scanning electron microscopy revealed that the product had a sheet morphology with an irregular particle size. Further, the luminescence properties, including the excitation and emission spectra, and luminescence decay curve, were investigated using a fluorescence spectrometer. The results showed that the Na3La(VO4)2 compound was an excellent host for activating the luminescence of Eu3+ (614 nm), Dy3+ (575 nm), and Sm3+ (647 nm) ions. Further, Dy3+/Eu3+ co-doped Na3La(VO4)2 phosphors were exploited, and the energy transfer from Dy3+ to Eu3+ was demonstrated in detail by the photoluminescence excitation, photoluminescence spectra, and luminescent decay curves. The results showed that the energy transfer efficiency from Dy3+ to Eu3+ was highly efficient, and the energy transfer mechanism was dipole–dipole interactions. Finally, tunable emissions from the yellow region of CIE (0.3925, 0.4243) to the red region of CIE (0.6345, 0.3354) could be realized by rationally controlling the Dy3+/Eu3+ concentration ratio. These phosphors may be promising materials for the development of solid-state lighting and display systems.
关键词: Vanadate phosphor,White LED,Energy transfer,Lighting and display,Near ultraviolet excitation,Tunable emissions
更新于2025-09-16 10:30:52