修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

69 条数据
?? 中文(中国)
  • Ultrathin wide-angle large-area digital 3D holographic display using a non-periodic photon sieve

    摘要: Holographic displays can provide a 3D visual experience to multiple users without requiring special glasses. By precisely tailoring light fields, holographic displays could resemble realistic 3D scenes with full motion parallax and continuous depth cues. However, available holographic displays are unable to generate such scenes given practical limitations in wavefront modulation. In fact, the limited diffraction angle and small number of pixels of current wavefront modulators derive into a 3D scene with small size and narrow viewing angle. We propose a flat-panel wavefront modulator capable of displaying large dynamic holographic images with wide viewing angle. Specifically, an ultrahigh-capacity non-periodic photon sieve, which diffracts light at wide angles, is combined with an off-the-shelf liquid crystal display panel to generate holographic images. Besides wide viewing angle and large screen size, the wavefront modulator provides multi-colour projection and a small form factor, which suggests the possible implementation of holographic displays on thin devices.

    关键词: 3D visualization,photon sieve,wide viewing angle,wavefront modulation,holographic displays

    更新于2025-11-25 10:30:42

  • Direct Three-Dimensional Visualization of Membrane Fouling by Confocal Laser Scanning Microscopy

    摘要: Membrane-based separation is an important technique for removing emulsified oil from water. However, the mechanisms of fouling are complex because of the deformability and potential for coalescence and break-up of the oil droplets. Here, we report for the first time direct, three-dimensional (3D) visualization of oil droplets on electrospun fiber microfiltration membranes after a period of membrane-based separation of oil-in-water emulsions. High-resolution 3D images were acquired by a dual-channel confocal laser scanning microscopy (CLSM) technique in which both the fibers and the oil (dodecane) were fluorescently labeled. The morphology of dodecane as the foulant was observed for two different types of fibers, an oleophobic nylon (PA6(3)T), and oleophilic polyvinylidene fluoride (PVDF). Through direct visualization, the rejected oil was found to form droplets of clam-shell shape on the PA6(3)T fibers, whereas the oil tended to wet the PVDF fibers and spread across the membrane. The morphology was also analyzed as a function of separation time (i.e., "4D" imaging), as the oil accumulated within and upon the membranes. The observations are qualitatively consistent with a transition from blocking of individual pores in the membrane to coalescence of oil droplets into coherent liquid films with increasing filtration time. Analysis of permeate flux using blocking filtration models corroborate the transition of fouling modes indicated by the 3D images. This direct, 3D visualization CLSM technique is a powerful tool for characterizing the mechanisms of fouling in membranes used for liquid emulsion separations.

    关键词: membrane fouling,3D imaging,oil emulsion,microfiltration,direct visualization

    更新于2025-11-21 11:08:12

  • [Methods in Molecular Biology] Plant Long Non-Coding RNAs Volume 1933 (Methods and Protocols) || Trimolecular Fluorescence Complementation (TriFC) Assay for Visualization of RNA-Protein Interaction in Plants

    摘要: RNA-protein interactions play important roles in various eukaryotic biological processes. Molecular imaging of subcellular localization of RNA-protein complexes in plants is critical for understanding these interactions. However, methods to image RNA-protein interactions in living plants have not yet been developed until now. Recently, we have developed a trimolecular fluorescence complementation (TriFC) system for in vivo visualization of RNA-protein interaction by transient expression in tobacco leaves. In this method, we combined conventional bimolecular fluorescence complementation (BiFC) system with the MS2 system (phage MS2 coat protein [MCP] and its binding RNA sequence [MS2 sequence]) to tag lncRNA. Target RNA is tagged with 6xMS2, and MCP and RNA-binding protein are fused with YFP fragments. DNA constructs encoding such fusion RNA and proteins are infiltrated into tobacco leaves with Agrobacterium suspensions. RNA-protein interaction in vivo is observed by confocal microscopy.

    关键词: RNA-protein interaction,Long noncoding RNA,TriFC,Tobacco transient expression,In vivo visualization

    更新于2025-11-21 11:08:12

  • Correlated Light-Serial Scanning Electron Microscopy (CoLSSEM) for ultrastructural visualization of single neurons in vivo

    摘要: A challenging aspect of neuroscience revolves around mapping the synaptic connections within neural circuits (connectomics) over scales spanning several orders of magnitude (nanometers to meters). Despite significant improvements in serial section electron microscopy (SSEM) technologies, several major roadblocks have impaired its general applicability to mammalian neural circuits. In the present study, we introduce a new approach that circumvents some of these roadblocks by adapting a genetically-encoded ascorbate peroxidase (APEX2) as a fusion protein to a membrane-targeted fluorescent reporter (CAAX-Venus), and introduce it in single pyramidal neurons in vivo using extremely sparse in utero cortical electroporation. This approach allows us to perform Correlated Light-SSEM (CoLSSEM), a variant of Correlated Light-EM (CLEM), on individual neurons, reconstructing their dendritic and axonal arborization in a targeted way via combination of high-resolution confocal microscopy, and subsequent imaging of its ultrastructural features and synaptic connections with ATUM-SEM (automated tape-collecting ultramicrotome - scanning electron microscopy) technology. Our method significantly will improve the feasibility of large-scale reconstructions of neurons within a circuit, and permits the description of some ultrastructural features of identified neurons with their functional and/or structural connectivity, one of the main goal of connectomics.

    关键词: connectomics,APEX2,in vivo,Correlated Light-SSEM,single neurons,ultrastructural visualization

    更新于2025-11-21 11:01:37

  • An Insight into the Mechanisms of the Scale Inhibition. A Case Study of a Novel Task-specific Fluorescent-tagged Scale Inhibitor Location on Gypsum Crystals

    摘要: Scaling in reverse osmosis facilities, boilers, heat exchangers, evaporation plants, and oilfield applications is a serious problem worldwide. In order to provide a new insight into the mechanism of the scale formation and inhibition, a novel fluorescent-tagged 1-hydroxy-7-(6-methoxy-1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)heptane-1,1-diyl-di(phosphonic acid), (HEDP-F) was synthesized and applied for the fluorescent microscope visualization of gypsum crystals formation in supersaturated aqueous solutions. The visualization of HEDP-F location at gypsum crystals, has demonstrated that the bisphosphonate molecules do not act as they are expected to do according to the current scale inhibition theory. At ambient temperature the gypsum macrocrystals are found to form, and then to grow without visible sorption of bisphosphonate on the crystal edges or any other gypsum crystal growth centers. A tentative nonconventional mechanism of scale inhibition in the bulk supersaturated aqueous solutions of gypsum is proposed.

    关键词: crystal formation,scale formation,visualization,gypsum,mechanisms of scale inhibition,fluorescent-tagged bisphosphonate

    更新于2025-11-19 16:46:39

  • Quick visualization of neurons in brain tissues using an optical clearing technique

    摘要: Neurons are classified into several morphological types according to the locations of their somata and the branching patterns of their axons and dendrites. Recent studies suggest that these morphological features are related to their physiological properties, including firing characteristics, responses to neuromodulators, and wiring patterns. Therefore, rapid morphological identification of electrophysiologically recorded neurons promises to advance our understanding of neuronal circuits. One of the most common anatomical cell identification methods is neuronal reconstruction with biocytin delivered through whole-cell patch-clamp pipettes. However, conventional reconstruction methods usually take longer than 24 h and limit the throughput of electrophysiological experiments. Here, we developed a quick, simple cell reconstruction method by optimizing the tissue clearing protocol ScaleSQ. We found that adding 200 mM NaCl almost entirely prevented tissue swelling without compromising optical clearing ability. This solution, termed IsoScaleSQ, allowed us to increase the transparency of the gray matter of 500-μm-thick slices within 30 min, meaning that the total time required to reconstruct whole-cell recorded neurons was reduced to 1 h. This novel method will improve the efficacy and effectiveness of electrophysiological experiments linked to cell morphology.

    关键词: Optical clearing,Isotropic,Visualization,Patch-clamp recording,ScaleSQ

    更新于2025-09-23 15:23:52

  • A touchless interaction interface for observing medical imaging

    摘要: Using volume rendering to generate 3D models is associated with the problem of missing features on areas of interest, which are possibly concealed by other information. This article presents a novel focus-and-context medical imaging observation system using gesture-based technique to build a touchless interactive environment. The system offers two types of medical imaging observation tool, namely, 3D section cutting tool and 3-axes cross-section synchronization tool, enabling users to quickly and easily observe tissue sections. Feature classification was achieved using region growing and size-based transfer approaches. Combined with view penetration function (cylinder and cone view penetration functions), the system allows for direct observation of hidden features. The analytical experimental results verified that the proposed system is easy to operate in a touchless environment and creates positive user experience regarding observation and interaction.

    关键词: Focus and context,Touchless,Medical imaging,Volume rendering,Visualization

    更新于2025-09-23 15:23:52

  • Three-dimensional reconstruction of incident shock/boundary layer interaction using background-oriented schlieren

    摘要: To study the three-dimensional flow structure of an incident shock/boundary layer interaction, a M2.7 nozzle model with a ramp was tested based on the background-oriented schlieren (BOS) technique. After comparing the results of CFD, shear-sensitive liquid crystal (SSLC), and high-speed schlieren, we conclude that BOS can capture the internal structure of the flow field and that its results are consistent with those of other methods in which the relative error can be controlled to 7%. In this research, a new type of experiment with several light paths was used with BOS technology. Three-dimensional reconstruction of incident oblique shock (primarily the width of Mach stem of the shock wave) and quantitative results of the flow field can be obtained successfully, and BOS shows great potential for the measurement of flow fields.

    关键词: visualization of flow fields,3D reconstruction,Background-oriented schlieren,quantitative measurement

    更新于2025-09-23 15:23:52

  • Blue-light imaging has an additional value to white-light endoscopy in visualization of early Barrett's neoplasia: an international multicenter cohort study

    摘要: Endoscopic features of early neoplasia in Barrett’s esophagus (BE) are subtle. Blue-light imaging (BLI) may improve visualization of neoplastic lesions. The aim of this study was to evaluate BLI in visualization of Barrett’s neoplasia. Methods: Corresponding white-light endoscopy (WLE) and BLI images of 40 BE lesions were obtained prospectively and assessed by 6 international experts in 3 assessments. Each assessment consisted of overview and magnification images. Assessments were as follows: assessment 1, WLE only; assessment 2, BLI only; and assessment 3, corresponding WLE and BLI images. Outcome parameters were as follows: (1) appreciation of macroscopic appearance and surface relief (visual analog scale scores); (2) ability to delineate lesions (visual analog scale scores); (3) preferred technique for delineation (ordinal scores); and (4) quantitative agreement on delineations (AND/OR scores). Results: Experts appreciated BLI significantly better than WLE for visualization of macroscopic appearance (median 8.0 vs 7.0, P < .001) and surface relief (8.0 vs 6.0, P < .001). For both overview and magnification images, experts appreciated BLI significantly better than WLE for ability to delineate lesions (8.0 vs 6.0, P < .001 and 8.0 vs 5.0, P < .001). There was no overall significant difference in AND/OR scores of WLE + BLI when compared with WLE, yet agreement increased significantly with WLE + BLI for cases with a low baseline AND/OR score on WLE, both in overview (mean difference, 0.15; P = .015) and magnification (mean difference, 0.10; P = .01). Conclusions: BLI has additional value for visualization of BE neoplasia. Experts appreciated BLI better than WLE for visualization and delineation of BE neoplasia. Quantitative agreement increased significantly when BLI was offered next to WLE for lesions that were hard to delineate with WLE alone.

    关键词: neoplasia,white-light endoscopy,visualization,Barrett's esophagus,delineation,blue-light imaging

    更新于2025-09-23 15:23:52

  • Evolution of shapes and identification of level II and III features of fingerprints using CaZrO3:Sm3+ fluorescent markers prepared via solution combustion route

    摘要: Simple solution combustion route is used for the fabrication of CaZrO3: Sm3+ (1–11 mol %) nanophosphors using Aloe Vera gel as a fuel. The powder X-ray diffraction profiles confirm the pure orthorhombic phase. The granular type particles with non-uniformity in the size is observed. Photoluminescence emission spectra exhibit intense peaks at ~571, 603, 651 and 708 nm, which are attributed to 4G5/2 → 6H5/2, 4G5/2 → 6H7/2, 4G5/2 → 6H9/2 and 4G5/2 → 6H11/2 transitions of Sm3+ ions, respectively. The photometric properties evident that the prepared samples emit bright orange - red light with 79% color purity. The average correlated color temperature value is found to be ~3100 K. Thermoluminescence glow curves exhibit a broad, intense peak at ~148 °C. The highest thermoluminescence intensity is recorded for 5 mol % of Sm3+ doped sample. The thermoluminescence intensity at ~148 °C is found to increase with increase of γ-dose. The optimized CaZrO3:Sm3+ (5 mol %) nanophosphors used as a luminescent labeling agent for visualization latent fingerprints on various porous and non-porous surfaces under ultraviolet 254 nm and normal light. The obtained results exhibits well defined ridge details with high sensitivity, selectivity, and low background hindrance which showed greater advantages. Extensive fingerprint details, namely level II and III features are clearly revealed. Hence, aforementioned results evident that the optimized sample endorse wide spread of applications, namely solid state lighting, high temperature dosimetry and advanced forensic science fields.

    关键词: Thermoluminescence,Photoluminescence,Sweat pore visualization,Solution combustion,Photometric properties

    更新于2025-09-23 15:23:52