修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

2 条数据
?? 中文(中国)
  • Fabrication of high efficiency visible light Z-scheme heterostructure photocatalyst g-C3N4/Fe0(1%)/TiO2 and degradation of rhodamine B and antibiotics

    摘要: We have prepared and studied a novel low cost catalyst of g-C3N4/Fe0(1%)/TiO2, using a simple process involving the formation of zero valence iron by chemical reduction. This ternary catalyst g-C3N4/Fe0(1%)/TiO2 was characterized using XRD (X-Ray diffraction), UV–vis spectrum, EDS (Energy Dispersive spectrum) and TEM (transmission electron microscopy), it demonstrated high-visible-light activity in a wide range of pH condition, it can photo-catalytically degraded Rhodamine B (RhB), Tetracycline (TC), and Berberine hydrogen chloride (BH) (~98% in 90 min) under visible light. The high activity arises from the increased harvest of more visible light and the improved separation of photo-excited electrons and holes via Z-scheme and heterojunctions mechanism. Also, the time required to remove 100% RhB, TC, and 96% BH can be shortened from 90 min to 60 min by introducing 3.18 mM Na2SO3 to this photocatalysis system that assisted the generation of reactive oxidizing species and pollutant degradation. The results showed promising application prospect for this developed catalyst and the tested photocatalysis pollutant degradation system.

    关键词: Antibiotics,z-scheme heterostructure,Rhodamine B,g-C3N4/Fe0(1%)/TiO2 photocatalyst,Visible-light

    更新于2025-09-23 15:23:52

  • Respective construction of Type-II and direct Z-scheme heterostructure by selectively depositing CdS on {001} and {101} facets of TiO2 nanosheet with CDots modification: A comprehensive comparison

    摘要: Directional deposition has always been a focus issue in the construction of specific heterostructure. Herein, for the first time, we have demonstrated that the CdS could be selectively deposited on {001} or {101} facets of TiO2 nanosheet, and two different charge transfer processes were formed. First, the selective deposition of CdS on {001} facets of TiO2 nanosheet ({001}TiO2/CdS) would form the Type-II heterostructure, which seriously weakened the redox ability of {001}TiO2/CdS and directly resulted in the low photocatalytic performance (4-Chlorophenol (4-CP), 61.92% in 40 min) and serious photocorrosion of CdS. In contrary, the selective deposition of CdS on {101} facets of TiO2 nanosheet ({101}TiO2/CdS) could construct direct Z-scheme heterostructure with significantly increased photocatalytic 4-CP degradation efficiency (96.12%), much higher than pristine TiO2 nanosheet (87.21%). The hybrids were further modified by carbon nanodots (CDots) ({101}TiO2/CdS/CDots) to enhance photocatalytic performance (99.84%). The obtained direct Z-scheme {101}TiO2/CdS/CDots showed excellent stability and anti-photocorrosion ability. The synergistic effect between TiO2 nanosheet, CdS and CDots was expounded through characterization analyses, and the photocatalytic reaction mechanism was proposed in detail. Toxicity assessment authenticated good biocompatibility and low cytotoxicity of {101}TiO2/CdS/CDots. Our discovery was expected to drive great advances in the use of TiO2 nanosheet for environmental remediation.

    关键词: Toxicity,Selective CdS deposition,Z-scheme heterostructure,TiO2 nanosheet,Anti-photocorrosion

    更新于2025-09-09 09:28:46