在工业自动化和精密测量领域,激光位移传感器已成为不可或缺的电工工具。无论是检测生产线上的微小偏差,还是监控配电系统中设备的振动幅度,其高精度和非接触式测量的优势显著提升了效率与安全性。然而,面对市场上琳琅满目的型号(如基于激光二极管或光纤元件的产品),许多工程师在选型和应用中仍存在困惑。本文将深入解析激光位移传感器的工作原理、核心参数及典型场景,助您全面掌握
顶刊高频之选
-
专业选型
-
正规认证
-
品质保障
严格把控产品质量,呈现理想的光电产品,确保每一件产品都能满足您的专业需求。
概述
参数
- 波片类型 / Waveplate Type : Zero-Order Waveplates, Low-Order Waveplates
- 迟滞 / Retardance : λ/2(Half-Wave)
- 延迟耐受性 / Retardance Tolerance : λ/300
- 基底/材料 / Substrate/Material : MgF2
- 表面质量 / Surface Quality : 40-20 scratch-dig
规格书
请提供您的邮箱下载规格书
怎么称呼您
接收邮箱
AI 智能分析
该产品已被1篇SCI论文引用
基于平台30万篇光学领域SCI论文分析
-
通过氢原子荧光和光解碎片荧光动作光谱探测乙炔S<sub>1</sub>态的预解离能级
荧光 光碎片 光谱学 乙炔 预解离
我们报道了两种获取47 000-47 300 cm?1能区(约解离阈值上方1200 cm?1)预解离S1乙炔能级转动分辨高分辨光谱的新实验方案。通过对比信号信噪比(S/N)和实验简便性,这两种新检测方案与本实验室先前用于研究预解离S1乙炔能级的多种检测方案(在相同激光功率、分子束温度及信号平均次数条件下)进行了评估。第一种方法采用双光子激光诱导荧光(LIF)探测预解离S1乙炔能级产生的氢原子:利用205.14 nm处的双光子共振跃迁将氢原子泵浦至3d能级,随后收集3d-2p荧光(654.5 nm)信号。该氢原子荧光动作光谱的信噪比始终比更常用的氢原子共振增强多光子电离(REMPI)检测高约3倍,且由于荧光检测方案允许使用更高数密度的分子,其激光准直操作也比氢原子REMPI检测简便得多。第二种方法检测S1乙炔电子激发态C2和C2H光碎片产生的荧光。与氢原子检测方案不同,这些光碎片由激发乙炔~A-~X跃迁的同一紫外激光产生,因此相比两种氢原子检测方案,光碎片荧光检测方案的激光准直大幅简化。采用光碎片荧光检测法获得的预解离S1乙炔能级动作光谱,其信噪比比HCCH REMPI检测高约2倍,比氢原子及HCCH LIF检测方案高约10倍。
查看全文 >
-
应用物理学实验方案
1. 实验设计与方法选择:采用两种新实验策略研究预解离的S1乙炔能级:氢原子荧光动作光谱法(HFAS)和光解碎片荧光动作光谱法(PFAS)。将这些方法与现有技术如氢原子共振增强多光子电离(REMPI)和乙炔激光诱导荧光检测进行对比。 2. 样本选择与数据来源:通过脉冲阀将乙炔分子束膨胀至真空腔室。针对氢原子和碳碎片检测方案,使用不同比例的氩气-乙炔混合气体。 3. 实验设备与材料清单:实验采用由Nd:YAG激光器泵浦的可调谐染料激光器、配备扩散泵的真空腔室、脉冲阀、光电倍增管,以及BBO晶体和滤光片等光学元件。 4. 实验流程与操作步骤:HFAS使用两束相向传播的激光激发S1乙炔跃迁并探测产生的氢原子;PFAS采用单束紫外激光同时实现激发与光解,产生电子激发的C2和C2H碎片,随后收集分析荧光信号。 5. 数据分析方法:通过光电倍增管记录荧光信号,经放大后使用数字示波器和计算机进行后处理分析。
获取完整方案
厂家介绍
Thorlabs致力于以快速有效的服务,为客户供应高品质的光电产品及附属产品。索雷博, 光学平台, 光学元件, 位移台, 光纤跳线, 激光器, 二极管驱动, 宽谱光源, 光电探测, 光束分析, OCT成像, 成像系统, 压电陶瓷, 光电实验室
智推产品
动态资讯
-
光谱仪的作用和功能
2025-07-27 08:00:31
-
光纤激光焊接机原理结构图
2025-10-23 23:40:37
-
星间激光通信???/a>
2025-11-26 06:30:43
-
共路干涉仪和非共路干涉仪的区别与联系
2025-10-24 14:40:49
科学论文
相关文章
-
-
在现代电子设备和系统的设计与维护中,一个稳定可靠的电源是确保其正常工作的基石。无论是精密的半导体器件还是复杂的配电系统,电压的波动都可能导致性能下降甚至硬件损坏。那么,什么是直流稳压电源?简单来说,它是一种能将不稳定的输入电压(如交流电或波动直流)转换为稳定、纯净的直流输出电压的电子设备。其重要性不言而喻:它为敏感负载提供“清洁”的能量,防止过压、欠压或噪声
-
在电子电工、半导体制造以及环保水处理等诸多工业领域,气动隔膜泵因其防爆、耐腐蚀及自吸能力强等优点,成为流体输送的关键设备。然而,若操作不当,不仅会严重影响生产效率,甚至可能损坏与之联动的精密配电系统或半导体器件生产线,造成巨大损失。因此,全面掌握气动隔膜泵使用注意事项,是每一位现场电工、设备维护工程师及管理人员的必备技能。本文将深入探讨其核心操作规范与维护要
-
在现代高速光通信与无线传输系统中,如何高效利用有限的频谱资源始终是核心技术挑战。波分复用(WDM)与频分复用(FDM)作为两种主流的复用技术,虽名称相似,却在原理、应用场景及实现方式上存在显著差异。准确理解波分复用和频分复用的区别,对于电子电工领域的工程师正确选择光纤元件、设计配电系统以及优化通信架构至关重要。本文将深入解析这两种技术的本质差异,并探讨其在实
加载中....
称呼
电话
单位名称
用途