在现代光通信网络中,高效、灵活地管理日益增长的数据流量是核心挑战。作为波分复用(WDM)系统中的关键节点设备,光分插复用器(OADM)发挥着不可或缺的作用。它允许在中间站节点直接上下(Add/Drop)特定波长的光信号,而无需将所有信号进行光电转换,极大地提升了网络效率和灵活性。因此,深入剖析光分插复用器的优缺点,对于网络规划工程师、系统集成商乃至配电系统设
顶刊高频之选
-
专业选型
-
正规认证
-
品质保障
严格把控产品质量,呈现理想的光电产品,确保每一件产品都能满足您的专业需求。
概述
参数
- 反射镜类型 / Mirror Type : Longpass Mirror, Dichroic Mirror
- 反射镜形状 / Mirror Shape : Rectangular
- 基底/材料 / Substrate/Material : UV Fused Silica
- 反射镜厚度 / Mirror Thickness : 1.0 mm (0.04 Inch)
- 表面质量 / Surface Quality : 40-20 scratch-dig
规格书
请提供您的邮箱下载规格书
怎么称呼您
接收邮箱
AI 智能分析
该产品已被4篇SCI论文引用
基于平台30万篇光学领域SCI论文分析
-
采用非周期性光子筛的超薄广角大面积数字三维全息显示器
3D可视化 光子筛 宽视角 波前调制 全息显示
全息显示器无需特殊眼镜即可为多位用户提供3D视觉体验。通过精确调控光场,全息显示器能呈现具有完整运动视差和连续深度线索的逼真3D场景。然而受波前调制实际限制,现有全息显示器尚无法生成此类场景——当前波前调制器有限的衍射角与像素数量导致生成的3D场景尺寸小且可视角度窄。我们提出一种平板波前调制器,可显示大尺寸动态全息图像并具备宽视角特性。具体而言,该方案将具有大角度衍射能力的超高容量非周期光子筛与商用液晶显示面板相结合来生成全息图像。除宽视角与大屏幕尺寸外,该波前调制器还支持多色投影且体积小巧,这意味着有望在轻薄设备上实现全息显示功能。
查看全文 > -
油样荧光高光谱成像及其在组分分析与厚度估算中的定量应用
K均值聚类 主成分分析 荧光高光谱成像 油类检测
对溢油事故进行快速响应与分析至关重要,但始终面临挑战。本研究开发了一套基于光栅-棱镜结构的紧凑型荧光高光谱系统,该系统能实现油类组分分析并对油膜厚度进行定量估算。该光谱仪波长范围为366-814纳米,光谱分辨率达1纳米。通过测定三种原油及其多种混合物的组分,验证了光谱系统方案的可行性。研究进一步发现油膜厚度与荧光高光谱强度呈线性关系,证实了利用荧光数据进行油膜厚度定量测量的可行性。该荧光高光谱成像系统不仅能实现油品识别、分布分析,还可检测油膜厚度,将其搭载于无人机等平台,在溢油事故应急中具有应用前景。
查看全文 > -
用于量子点编码微珠阵列生物检测的光谱-光学镊子辅助荧光复用系统
珠阵列 量子点编码 光镊 多重生物检测
作为一种高效的多重生物分子检测工具,微珠阵列可实现无需分离的多目标检测,适用于分析活体生物中抗原、抗体等珍贵稀缺样本。本研究提出一种光谱光学镊子辅助的荧光多重检测系统用于分析生物分子偶联微珠阵列。通过光学镊子将微珠捕获并锁定于焦点处接受激发,提供稳定优化的检测条件。移动系统焦点并扫描样品载玻片,实现多重检测后量子点编码微珠阵列的发射光收集。光谱仪采集记录荧光发射光谱,通过识别解码峰位置并计算发射光谱标记信号强度,完成对目标物的定性与定量检测。概念验证研究表明,该系统可对单一样本中的多种抗-IgG进行多重检测,检测限达1.52 pM(线性范围0.31-10 nM)。进一步优化实验条件后,采用夹心法实现对人血清中目标IgG的特异性检测,检测限低至0.23 pM(线性范围0.88-28 pM),证实了该方法在实际样本中的实用价值。
查看全文 >
-
光电信息科学与工程实验方案
1. 实验设计与方法选择:该系统采用透射式LCD面板结合非周期性光子筛来调制波前。光子筛由随机取向的微孔构成,这些微孔能产生大角度衍射光,从而增大全息图像的可视角度。LCD像素与微孔的一一对应关系实现了光场的独立调控。 2. 样本选择与数据来源:光子筛通过常规光刻和电子束写入工艺制备。使用不同波长的激光照射生成并采集全息图像(如螺旋体、四面体、旋转立方体等)。 3. 实验设备与材料清单:LCD面板(LCX017AL,索尼)、激光器(绿光532nm/红光639nm/蓝光473nm)、熔融石英基底镀钛薄膜的光子筛、CCD相机(Lt365R,Lumenera)、物镜(UPlan FLN 40×/UPLSAPO 4×,奥林巴斯)、管镜(焦距100mm)、二向色镜(DMLP505/DMLP550,Thorlabs)、用于成像的可移动载物台。 4. 实验流程与操作步骤:将LCD面板与光子筛对齐贴合,激光束照射面板后显示最佳相位图案以在目标位置形成焦点。通过搭载于可移动载物台的4f望远镜成像系统采集图像,观察运动视差与不同视角效果。采用泽尼克多项式进行像差校正。 5. 数据分析方法:基于光程差代数计算聚焦相位值。对比度因子以全息图像强度与背景噪声的比值测定。通过半高宽测量和空间频率图谱分析可视角度及焦点尺寸。
获取完整方案 -
精密仪器实验方案1
1. 实验设计与方法选择:设计并搭建了一套荧光高光谱检测系统,采用405 nm线激光作为激发光源,配备自主研制的棱镜-光栅-棱镜结构成像光谱仪进行检测。系统包含电动平移台用于样品扫描。方法包括光谱校准、数据预处理(背景扣除、条纹噪声消除、Savitzky-Golay平滑)以及采用PCA和K-means聚类进行油品分类、线性回归进行厚度估算的数据分析。 2. 样品选择与数据来源:使用三种原油及其混合物(见表1)进行组分分析。通过向培养皿水中精确添加不同体积柴油,制备100-400 μm厚度(间隔25 μm)的油膜样品,模拟溢油场景。 3. 实验设备与材料清单:设备含405 nm线激光器(200 mW)、二向色分束镜(DMLP425R,Thorlabs)、长通滤光片(FELH0450,Thorlabs)、成像透镜(AC254-030-A,Thorlabs)、狭缝、非球面消色差透镜(#49-665,Edmund)、带光栅(GT25-03,Thorlabs)的棱镜-光栅-棱镜结构、CMOS相机(ASI74MM,ZWO)、电动平移台、样品槽、校准光源(HG-1,Ocean Optics)及移液器。材料包括原油样品、柴油和水。 4. 实验流程与操作规范:系统通过校准光源进行标定。油样检测时电动平移台以20 mm/s速度移动,每50 μm采集一次曝光100 ms的图像。厚度估算时每份柴油样品扫描50幅图像,间距0.5 mm。预处理包含背景扣除、噪声消除和平滑,经PCA降维后采用K-means聚类分析油品分布,通过线性回归建立荧光强度与油膜厚度的关系。 5. 数据分析方法:采用非线性迭代偏最小二乘法PCA进行降维,K-means聚类将光谱归类为油品类型,线性回归分析荧光强度与油膜厚度的关系并计算决定系数R2。
获取完整方案 -
精密仪器实验方案2
1. 实验设计与方法选择:本研究采用自制光谱光学镊子系统捕获并激发量子点编码微珠以实现荧光多重检测。光学镊子提供非接触式捕获和稳定的激发条件。 2. 样本选择与数据来源:聚苯乙烯微珠(直径10μm和5μm)编码有CdSe/ZnS量子点(525、565、585、625nm),并偶联特定生物探针(如抗IgG抗体)。样本包括含不同浓度目标生物分子的PBS溶液及人血清。 3. 实验设备与材料清单:设备包含405nm单模激光器、Olympus 100×油镜(NA=1.30)、二向色镜(Thorlabs DMLP500)、分束器、透镜组(L1-L5)、照明LED、矩阵CCD(ZWO ASI178MC)、自制光谱仪、三维平移台。材料包括聚苯乙烯微珠、量子点、IgG抗体、抗IgG抗体、PEI、PSS、戊二醛、人血清,以及来自Nano-Micro研究中心、武汉嘉源量子点技术开发公司、Bioss生物技术公司、Solarbio生命科学、阿拉丁工业公司等供应商的各类化学试剂。 4. 实验流程与操作步骤:通过自修复法制备量子点编码微珠并进行表面生物探针修饰,用于免疫检测(一步免疫吸附或夹心法)。光学系统在激光焦点处捕获微珠,用405nm激光激发量子点,通过光谱仪和CCD收集荧光发射信号,并扫描样品载玻片分析多个微珠。 5. 数据分析方法:分析荧光光谱以识别解码峰(定性检测)和标记峰(定量检测),测量强度并拟合标准曲线进行浓度响应分析,基于空白信号和标准差计算检测限。
获取完整方案
获取完整实验方案
我们还有1 个针对不同应用场景的完整实验方案,包括详细设备清单、连接示意图和数据处理方法。
联系获取完整方案
厂家介绍
Thorlabs致力于以快速有效的服务,为客户供应高品质的光电产品及附属产品。索雷博, 光学平台, 光学元件, 位移台, 光纤跳线, 激光器, 二极管驱动, 宽谱光源, 光电探测, 光束分析, OCT成像, 成像系统, 压电陶瓷, 光电实验室
智推产品
动态资讯
-
光学内窥镜的原理
2025-11-28 22:20:42
-
步进电机驱动板使用及接线介绍
2025-09-03 05:20:37
-
谐振电路原理视频
2025-11-04 11:00:54
-
红外光谱仪主要检测什么
2025-11-25 15:20:49
科学论文
相关产品
-
PS 975 M-M01安装式25.4mm后向反射器
光学反射镜
索雷博
有效孔径: ?17.8mm 直径公差: +0/-0.1mm 表面质量: 40-20 Scratch-Dig
PS975M-M01是一款安装在直径为25.4mm的反射器,具有高精度光学性能和耐用的结构设计。
相关文章
-
-
紫外线辐射危害健康与材料,因臭氧层损耗等风险加剧。传统防护技术存资源、污染问题,需更可持续替代方案。
-
在当今快速发展的电子电工领域,LED芯片作为核心的半导体器件,其市场动向直接关系到从照明到显示、从汽车电子到智能家居等一系列产业的兴衰。然而,市场充满了不确定性,仅凭经验或直觉做出决策的风险极高。因此,通过科学的数据分析来洞察LED芯片的市场发展趋势,对于制造商、分销商、方案设计师乃至使用这些芯片构建配电系统的工程师而言,都变得至关重要。本文将深入探讨如何借
-
在众多电工工具与照明设备中,气体放电灯触发器是一个虽不显眼却至关重要的核心部件。无论是大型体育场的氙气灯、工业厂房的金属卤化物灯,还是部分高压钠灯,其启动和稳定工作都离不开一个性能卓越的触发器。它如同心脏的起搏器,负责产生一个瞬间的高压脉冲,击穿灯管内的气体,从而引发气体放电发光。然而,在实际的配电系统应用中,触发器选型不当、安装错误或老化失效等问题屡见不鲜
加载中....
称呼
电话
单位名称
用途