在工业自动化和精密测量领域,激光位移传感器已成为不可或缺的电工工具。无论是检测生产线上的微小偏差,还是监控配电系统中设备的振动幅度,其高精度和非接触式测量的优势显著提升了效率与安全性。然而,面对市场上琳琅满目的型号(如基于激光二极管或光纤元件的产品),许多工程师在选型和应用中仍存在困惑。本文将深入解析激光位移传感器的工作原理、核心参数及典型场景,助您全面掌握
AOMO 3200-125
For use in the 470–690 nm wavelength range, at an operating frequency of 200 MHz
顶刊高频之选
-
专业选型
-
正规认证
-
品质保障
严格把控产品质量,呈现理想的光电产品,确保每一件产品都能满足您的专业需求。
概述
参数
- 光纤类型 / Fiber Type : Free Space
- 声光材料 / Acousto-Optic Material : Tellurium Dioxide (TeO2)
- 对比度 / Contrast Ratio : 1000:1
- 电压驻波比 / VSWR : 1.30:1
图片集
规格书
AI 智能分析
该产品已被2篇SCI论文引用
基于平台30万篇光学领域SCI论文分析
-
对行为中的幼年斑马鱼全脑神经元活动进行全光学成像与操控
全光学探测群体神经元活动是破译支持大脑功能的神经回路机制的一种有前景的方法。然而,目前这种探测仅限于局部脑区。在此,我们将模式化光刺激整合到光片显微镜中,实现了对头部固定行为幼斑马鱼神经元活动的全脑同步靶向光遗传学操控与监测。利用该系统,我们对广泛表达光谱分离的钙指示剂GCaMP6f(用于监测)和活性执行器ChrimsonR(用于操控)的斑马鱼幼体进行任意选定神经元(三维空间内小至约10-20个神经元区域)的光刺激,并观测下游神经回路激活与行为产生过程。该方法使我们能够解析神经回路在大脑功能与行为产生中的因果作用。
查看全文 > -
通过多色激发增强近表面氮空位中心的负电荷
氮空位中心 复合 浅层NV色心 体NV色心 光动力学 绿光激发 电离 电荷态 红外激发 金刚石
过去几年间,钻石中的氮空位(NV)中心已被证实是量子信息科学到磁传感等多种应用领域极具前景的系统。这依赖于带负电NV中心的独特光学与自旋特性。许多应用需要浅层NV中心——即距离钻石表面仅数纳米的NV中心。近年来学界日益关注不同光照条件(特别是红外激发)下NV中心自旋与电荷动力学的研究,已有实验证明红外激发会显著影响NV中心的发光与电荷态。然而现有实验数据尚未得到完整解释,块体NV与浅层NV光动力学潜在差异更增添了研究复杂性。本研究提出了适用于绿光与红外激发的NV中心自旋-电荷态动力学通用定量模型,通过实验测定相关跃迁速率,构建出能统一解释现有文献所有实验结果(高度非线性区域除外)的综合模型。此外,我们发现了块体NV与浅层NV光动力学的关键差异,并据此显著提升了浅层NV初始化为有效负电荷态的保真度。
查看全文 >
-
精密仪器实验方案
1. 实验设计与方法选择:本研究构建了定制化全光学系统,整合图案化光刺激(使用数字微镜器件DMD)与光片显微镜技术,实现全脑成像与光遗传学操控同步进行。系统采用红移光遗传学激活剂ChrimsonR与钙指示剂GCaMP6f以最小化光谱串扰,并包含高速行为监测以研究神经元在行为中的作用。通过高速数据采集卡和LabView控制器实现光学元件校准与仪器同步。 2. 样本选择与数据来源:使用转基因斑马鱼幼体(受精后4-9天,如Tg(elavl3:H2B-GCaMP6f;elavl3:ChrimsonR-tdTomato)品系),实现GCaMP6f与ChrimsonR的泛神经元表达。斑马鱼在标准条件下饲养,实验经动物使用委员会批准。 3. 实验设备与材料清单:关键设备包括配备振镜的光片显微镜、DMD(V4100???,德州仪器)、sCMOS相机(Orca Flash 4.0,滨松)、CMOS相机(GO 5000,JAI)、激光器(Sapphire LP 488 100 CW,相干公司;MGL-W-589nm-2W,长春新产业;OBIS 561 nm LS 100 mW,相干公司)、物镜(如W N-Achroplan 20×/0.5,卡尔蔡司)、光学扩散器(OD;#48514,爱特蒙特)、数据采集卡(PCI-6733,USB-6363,美国国家仪器)及滤光片(如Di01-R405/488/594,Semrock)。材料包含汉克斯溶液、琼脂糖及CNQX、APV等化学试剂。 4. 实验流程与操作规范:系统同步执行容积成像(2.5-4 Hz)、靶向光刺激(基于神经元位置加载DMD图案)及行为监测(240 Hz)。流程包括光刺激精度校准、特定神经元激活(如下丘脑或被盖区)以及突触传递与行为(如尾部卷曲)评估。通过HCImage软件采集数据,Matlab进行同步分析。 5. 数据分析方法:采用分水岭算法对荧光图像进行配准与分割,基于GCaMP6f荧光变化(ΔF/F0)分析神经元反应,刺激后活性超过刺激前水平即判定为显著。统计分析使用Spearman相关性与均值±标准误。
获取完整方案 -
物理学实验方案
1. 实验设计与方法选择:采用自制共聚焦显微镜,在连续波绿色(532 nm)和红外(1064 nm)激光激发下研究NV色心。通过稳态和时间分辨荧光测量分析电荷态动力学,并建立速率方程模型描述光动力学过程。 2. 样本选择与数据来源:测量高纯度化学气相沉积(CVD)金刚石样品(Element Six电子级,植入N15并退火)中的单浅层NV色心,以及高压高温(HPHT)样品(Element Six)中的体NV色心。数据采集使用经NV?和NV?态滤光的荧光信号。 3. 实验设备与材料清单:激光器:CNI MGL-III-532 100 mW(532 nm)、II-VI SUWTECH DPIR 2200(1064 nm)。调制器:Gooch and Housego AOMO 3080-125。物镜:Nikon Plan Apochromat 100X油镜Lambda NA 1.45 WD 0.13 mm。探测器:Excelitas SPCM-700-13-FC单光子计数器。滤光片:Semrock NF01-532U-25、Semrock FF01-736/128-25、Semrock FF01-600/52-25。样品:Element Six CVD与HPHT金刚石。 4. 实验流程与操作步骤:通过油浸物镜将光束聚焦至衍射极限光斑。收集荧光并导入单光子计数器。脉冲序列采用红外激光开关而绿色激光持续照射,测量随时间变化的荧光动力学。数据分析提取电离与复合速率。 5. 数据分析方法:基于八能级能级图,使用MATLAB的ODE45数值求解速率方程。通过准稳态种群推导公式拟合实验数据提取截面参数。
获取完整方案
厂家介绍
Gooch & Housego 是一家总部设在英国伊尔明斯特·萨默塞特的光子技术业务,在美国和欧洲都有业务。该公司是该领域的#领先#者,研究、设计、工程师和制造先进的光子系统、组件和仪器仪表,以应用于航空航天和国防、工业、生命科学和科学研究领域。领先的设计、开发和制造专门知识是跨越广泛的互补技术提供的。
智推产品
动态资讯
-
光谱仪的作用和功能
2025-07-27 08:00:31
-
光纤激光焊接机原理结构图
2025-10-23 23:40:37
-
星间激光通信???/a>
2025-11-26 06:30:43
-
共路干涉仪和非共路干涉仪的区别与联系
2025-10-24 14:40:49
科学论文
相关文章
-
-
在现代电子设备和系统的设计与维护中,一个稳定可靠的电源是确保其正常工作的基石。无论是精密的半导体器件还是复杂的配电系统,电压的波动都可能导致性能下降甚至硬件损坏。那么,什么是直流稳压电源?简单来说,它是一种能将不稳定的输入电压(如交流电或波动直流)转换为稳定、纯净的直流输出电压的电子设备。其重要性不言而喻:它为敏感负载提供“清洁”的能量,防止过压、欠压或噪声
-
在电子电工、半导体制造以及环保水处理等诸多工业领域,气动隔膜泵因其防爆、耐腐蚀及自吸能力强等优点,成为流体输送的关键设备。然而,若操作不当,不仅会严重影响生产效率,甚至可能损坏与之联动的精密配电系统或半导体器件生产线,造成巨大损失。因此,全面掌握气动隔膜泵使用注意事项,是每一位现场电工、设备维护工程师及管理人员的必备技能。本文将深入探讨其核心操作规范与维护要
-
在现代高速光通信与无线传输系统中,如何高效利用有限的频谱资源始终是核心技术挑战。波分复用(WDM)与频分复用(FDM)作为两种主流的复用技术,虽名称相似,却在原理、应用场景及实现方式上存在显著差异。准确理解波分复用和频分复用的区别,对于电子电工领域的工程师正确选择光纤元件、设计配电系统以及优化通信架构至关重要。本文将深入解析这两种技术的本质差异,并探讨其在实
加载中....
称呼
电话
单位名称
用途