- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Electrochemical and optical characterization of a multielectrochromic copolymer based on 3,4-ethylenedioxythiophene and functionalized dithienylpyrrole derivative
摘要: A novel conjugated copolymer, namely poly(3,4-ethylenedioxythiophene-co-1-(3,5-bis(trifluoromethyl)phenyl)-2,5-di(thiophen-2-yl)-1H-pyrrole) (P(EDOT-co-1)) was synthesized via electropolymerization method from a mixture of 3,4-ethylenedioxythiophene and 1-(3,5-bis(trifluoromethyl)phenyl)-2,5-di(thiophen-2-yl)-1H-pyrrole comonomers. The corresponding copolymer has an optical band gap of 1.7 eV and 41% optical contrast at 525 nm with a coloration efficiency of 258 cm2/C and 1.4 s switching time. The copolymer has a multi-electrochromic behavior: It has dark purple, purple, gray, green and cyan colors at different oxidation states. Electrochemical stability of P(EDOT-co-1) copolymer was also investigated and it was observed that the copolymer retained 86% of its stability under ambient conditions in the presence of oxygen (without purging the electrolyte solution with any inert gas) according to the current density and 83% according to the deposited charge even after 1000 redox cycles.
关键词: Copolymerization,SNS,3,4-Ethylenedioxythiophene,EDOT,Multielectrochromism, dithienylpyrrole,Electropolymerization,1,4-di(thiophen-2-yl)butane-1,4-dione,3,5-bis(trifluoromethyl)benzenamine
更新于2025-09-23 15:21:01
-
Plasmon–Induced Dimerization of Thiazolidine-2, 4-Dione on Silver Nanoparticles - Revealed by Surface-Enhanced Raman Scattering Study
摘要: Surface-enhanced Raman scattering (SERS) study carried on thiazolidine-2, 4-dione (TZD), pharmacologically active heterocyclic compound, points to the presence of TZD dimer formed by plasmon-induced dimerization reaction of TZD on the surface of silver nanoparticles (Ag NP) at TZD concentrations of 10-3 M and above. The evidence for the presence of dimer was obtained from the appearance of a prominent band at 1566 cm-1 corresponding to ν C=C band (a characteristic vibrational band observed for the Knoevenagel condensation reaction products) which is absent in the normal Raman scattering (NRS) spectra of TZD solid/solution. The observed spectrum compares well with the calculated spectrum of dimer obtained using density functional theory (DFT) calculations. The dimerization reaction is plausibly induced by the transfer of hot electrons generated by the non-radiative plasmon decay of Ag NP and the proposed reaction mechanism is discussed. However, at lower concentrations (10-4 to 10-6M), the characteristic dimer peak (1566 cm-1) is absent and the SERS spectra resemble more with the NRS spectrum of TZD with few changes. The spectral analysis supported by DFT calculations showed that TZD molecules undergo deprotonation and get adsorbed on Ag NP surface as enolate forms. The proximity of TZD molecules on the surface of Ag NP is a necessary factor for the dimerization to occur. At lower concentrations, most molecules lie apart and reactions between molecules become less feasible and they remain as monomers on the surface, while at higher concentrations the molecules are closer to each other on Ag NP surface favouring the dimerization reaction to take place leading to the formation of the dimer.
关键词: density functional theory,thiazolidine-2, 4-dione,silver nanoparticles,plasmon-induced dimerization,Surface-enhanced Raman scattering
更新于2025-09-19 17:13:59
-
Organic solar cells based on chlorine functionalized benzo[1,2-b:4,5-ba?2]difuran-benzo[1,2-c:4,5-ca?2]dithiophene-4,8-dione copolymer with efficiency exceeding 13%
摘要: Benzo[1,2-b:4,5-b′]dithiophene (BDT) has been widely used to construct donor-acceptor (D-A) copolymers in organic solar cells (OSCs). However, benzo[1,2-b:4,5-b′]difuran (BDF), an analogue of BDT, has received less attention than BDT. The photovoltaic performance of BDF copolymers has lagged behind that of BDT copolymers. Here, we designed and synthesized two BDF copolymers, PBF1-C and PBF1-C-2Cl. PBF1-C-2Cl, which is composed of BDF and benzo[1,2-c:4,5-c′]dithiophene-4,8-dione connected by a chlorinated thiophene π-bridge, displays a low-lying highest occupied molecular orbital energy level, which helps in yielding a high open-circuit voltage (Voc) in OSCs. As a result, when blended with Y6, PBF1-C-2Cl-based devices showed a high Voc of 0.83 V and a power conversion efficiency (PCE) of 13.10%. To the best of our knowledge, the PCE of 13.10% is among the highest efficiency values for OSCs based on BDF copolymers.
关键词: chlorinated thiophene,π-bridge,benzo[1,2-c:4,5-c′]dithiophene-4,8-dione,benzo[1,2-b:4,5-b′]difuran,organic solar cells
更新于2025-09-19 17:13:59
-
Efficient non-fullerene polymer solar cells enabled by side-chain conjugated thieno[3,4-c]pyrrole-4,6-dione-based polymer and small molecular acceptors
摘要: The application of non-fullerene (NF) acceptors in bulk-heterojunction (BHJ) polymer solar cells (PSCs) is a promising approach to overcome the inherent drawbacks of fullerene derivatives-based acceptors. In PSCs, complementary absorption as well as matched molecular energy levels between the low bandgap acceptor-donor-acceptor (A-D-A) small molecular acceptor and medium/wide bandgap polymer donor is crucial to achieve high power conversion efficiency (PCE). Alternating polymers based on benzodithiophene (BDT) electron-donating segment and thieno[3,4-c]pyrrole-4,6-dione (TPD) electron-withdrawing segment own medium bandgap and low-lying highest occupied molecular orbital (HOMO) energy level, leading to presentable photovoltaic properties with fullerene derivatives. To probe into the performances of TPD-based polymers in NF-PSCs, two TPD-based polymers containing alkoxy or alkylthienyl modified benzo[1,2-b:4,5-b′]dithiophene (BDT) were synthesized and adopted as electron-donors and blended with A-D-A-type electron-acceptor 2,2′-[[6,6,12,12-tetrakis(4-hexylphenyl)-s-indacenodithieno[3,2-b]thiophene]methylidyne(3-oxo-1H-indene-2,1(3H)-diylidene)]]bis(propanedinitrile) (ITIC) to fabricate the corresponding photovoltaic devices. The two-dimensional conjugated polymer PBDTT-TPD shows enhanced extinction coefficient, deeper HOMO energy level and better hole transport performance, resulting in improved PCE of 6.17%. To further boost the performances of the polymers, a small molecular acceptor 2,2′-((2Z,2′Z)-((4,4,9,9-tetrahexyl-4,9-dihydro-s-indaceno[1,2-b:5,6-b′]dithiophene-2,7-diyl) bis(methanylylidene))bis(3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile (IDIC) with down-shifted energy level was also used to blend with the two polymers in PSCs. Despite the open-circuit voltage (VOC) of the PBDTT-TPD:IDIC-based device is slightly decreased, the short-circuit current density (JSC) and fill factor (FF) are simultaneously improved, yielding an promising PCE of 7.15%. These results indicate that two-dimensional conjugated TPD-based polymers can be potential application as medium bandgap polymeric donor to match with small molecular acceptors having suitable molecular energy levels to get high efficiency in PSCs.
关键词: Non-fullerene acceptors,Thieno[3,4-c]pyrrole-4,6-dione,Energy level offsets,Polymer solar cells,Thermal annealing
更新于2025-09-11 14:15:04
-
Bicomponent-random Approach to Synthesis of Donor Polymers for Efficient All-Polymer Solar Cells Processed from A Green Solvent
摘要: All-polymer solar cells (all-PSCs) can offer unique merits of high morphological stability to thermal and mechanical stress. To realize its full potential as flexible or wearable devices, it is highly desirable that the all-PSCs can be fabricated from green solvent with simple post-treatment to avoid thermal annealing on flexible substrate. This proposed a severely challenge on material design to tune their properties with suitable solubility, aggregation, and morphology. To address this challenge, here, a simple bicomponent-random approach on a D-A-type polymer donor was developed by just varying the D-A molar ratio. Under this approach, a series of new random polymers PBDTa-TPDb with different molar ratio of D component of 2D-benzo[1,2-b:4,5-b']dithiophene (BDT) and A component of thieno[3,4-c]pyrrole-4,6-dione (TPD) were designed and synthesized. The energy levels, light absorption, solubility and packing structure of random donors PBDTa-TPDb were found to vary substantially with the various D-A molar ratio. The devices based PBDTa-TPDb/P(NDI2HD-T) were fabricated to explore the synergistic effects of processing solvent and composition of D-A-type random polymers. The results show that nanoscale morphology, balanced miscibility/crystallinity of blend and photovoltaic properties could be rationally optimized by tuning the composition of random donors. As a result, as-cast all-PSC based optimal donor PBDT5-TPD4 achieves a best power conversion efficiency (PCE) of 8.20% processed from green solvent, which performs better than that based reference polymer (PCE: 6.41%). This efficiency is the highest value for all-PSCs from BDT-TPD-based donors. Moreover, the optimized devices exhibited relatively insensitive to the thickness of the active layer and good stability.
关键词: thieno[3,4-c]pyrrole-4,6-dione,all-polymer solar cells,bicomponent-random approach,benzo[1,2-b:4,5-b']dithiophene,green solvent
更新于2025-09-11 14:15:04
-
Theoretical study of charge-transport and optical properties of indeno[1,2- <i>b</i> ]fluorene-6,12-dione-based semiconducting materials
摘要: The conducting and optical properties of a series of indeno[1,2-b]fluorene-6,12-dione (IFD)-based molecules have been systematically studied and the influences of butyl, butylthio and dibutylamino substituents on the reorganization energies, intermolecular electronic couplings and charge-injection barriers of IFD have been discussed. The quantum-chemical calculations combined with electron-transfer theory reveal that the incorporation of sulfur-linked side chains decreases reorganization energy associated with hole transfer and optimizes intermolecular π–π stacking, which results in excellent ambipolar charge-transport properties (μh = 1.15 cm2 V?1 s?1 and μe = 0.08 cm2 V?1 s?1); in comparison, addition of dibutylamino side chains increases intermolecular steric interactions and hinders perfect intermolecular π–π stacking, which results in the weak electronic couplings and finally causes the low intrinsic hole mobility (μh = 0.01 cm2 V?1 s?1). Furthermore, electronic spectra of butyl-IFD, butylthio-IFD and dibutylamino-IFD were simulated and compared with the reported experimental data. Calculations demonstrate that IFD-based molecules possess potential for developing novel infrared and near-infrared probe materials via suitable chemical modifications.
关键词: intrinsic electron mobility,structure–function relationship,indeno[1,2-b]fluorene-6,12-dione-based molecules,density functional theory (DFT),intrinsic hole mobility,electronic spectra
更新于2025-09-09 09:28:46