- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Albumin-functionalized CuFeS2/photosensitizer nanohybrid for single-laser-induced folate receptor-targeted photothermal and photodynamic therapy
摘要: Multimodal therapy is an emerging medical intervention to overcome the current limitation in cancer therapy combining treatment modalities with different mechanisms of action to eradicate tumors. This study demonstrates a targeted multifunctional bovine serum albumin (BSA)-functionalized CuFeS2/chlorin e6 (Ce6) for synergistic photothermal therapy (PTT) and photodynamic therapy (PDT) effects. The CuFeS2 nanocrystals were synthesized through a simple heating-up approach and transferred into an aqueous phase using BSA in an ultrasonic-assisted microemulsion method. The as-prepared CuFeS2@BSA nanoparticles further conjugated with folic acid (FA) followed by attachment of Ce6 to form the Ce6:CuFeS2@BSA-FA nanohybrid with improved solubility and strong near-infrared (NIR) absorbance and fluorescence. It is the first report to fabricate the targeted Ce6:CuFeS2@BSA-FA hybrid and evaluates their synergistic PTT/PDT effect using a single laser. The Ce6:CuFeS2@BSA-FA hybrid showed lower toxicity in vitro (HeLa and HepG2 cells) and in vivo (zebrafish embryos), while they are selectively recognized and internalized by HeLa cells that over-express folate receptors. Compared to each modality applied separately, the combined single-laser-induced PTT and PDT treatment showed the enhanced generation of heat and reactive oxygen species (ROS) with synergistic cancer killing under 671 nm laser irradiation (10 min, 1 W/cm2). As a biocompatible targeted nanoprobe, the multifunctional nanohybrid holds promise in combined PDT/PTT synergistic therapy to achieve better efficacy.
关键词: Photodynamic therapy,Single laser,Photosensitizers,Photothermal therapy,CuFeS2
更新于2025-11-14 17:04:02
-
Fatigue behavior improvements of laser-induction hybrid welded S690QL steel plates
摘要: In this paper, the improvements of fatigue performances of S690QL steel welded by laser-induction hybrid welding (LIHW) method were performed, mainly through the infrared imaging device to obtain the weld thermal cycle, fatigue machine to test the fatigue strength and scanning electron microscope to observe the fracture morphology. In fatigue tests, tension-tension fatigue loading and stress ratio R = 0.1 was selected. The LIHW fitted S-N curves were derived. It was found that the cracks with symmetrical grooves were initiated at the weld center (WC), while the single-laser welding (SLW) fatigue samples were fractured at the WC. However, the LIHW samples were finally fractured near heat-affected zone (HAZ). The fracture morphology of fatigue samples with stress amplitude of 108 MPa and 144 MPa were further selected to analysis. Due to different degree of defects or stress concentration, and different welding heat input absorption ability and cooling rate, in sudden fracture region, SLW fatigue samples mainly contained the brittle transient failure mode, LIHW fatigue samples mainly showed a ductile failure mode. It can thus be concluded that the LIHW method could improve the fatigue performance of S690QL steel joints.
关键词: Transient failure mode,Single-laser welding,Cracks,Laser-induction hybrid welding,Fatigue strength
更新于2025-09-23 15:19:57
-
Versatile high-speed confocal microscopy using a single laser beam
摘要: We present a new flexible high speed laser scanning confocal microscope and its extension by an astigmatism particle tracking velocimetry (APTV) device. Many standard confocal microscopes use either a single laser beam to scan the sample at a relatively low overall frame rate or many laser beams to simultaneously scan the sample and achieve a high overall frame rate. The single-laser-beam confocal microscope often uses a point detector to acquire the image. To achieve high overall frame rates, we use, next to the standard 2D probe scanning unit, a second 2D scan unit projecting the image directly onto a 2D CCD-sensor (re-scan configuration). Using only a single laser beam eliminates crosstalk and leads to an imaging quality that is independent of the frame rate with a lateral resolution of 0.235 μm. The design described here is suitable for a high frame rate, i.e., for frame rates well above the video rate (full frame) up to a line rate of 32 kHz. The dwell time of the laser focus on any spot in the sample (122 ns) is significantly shorter than those in standard confocal microscopes (in the order of milli- or microseconds). This short dwell time reduces phototoxicity and bleaching of fluorescent molecules. The new design opens up further flexibility and facilitates coupling to other optical methods. The setup can easily be extended by an APTV device to measure three dimensional dynamics while being able to show high resolution confocal structures. Thus, one can use the high resolution confocal information synchronized with an APTV dataset.
关键词: APTV,high-speed imaging,astigmatism particle tracking velocimetry,confocal microscopy,single laser beam
更新于2025-09-23 15:19:57
-
Nanococktail Based on AIEgens and Semiconducting Polymers: A Single Laser Excited Image-Guided Dual Photothermal Therapy
摘要: Semiconducting polymers (SPs)-based dual photothermal therapy (PTT) obtained better therapeutic effect than single PTT due to its higher photothermal conversion efficiency. However, most dual PTT need to use two lasers for heat generation, which brings about inconvenience and limitation to the experimental operations. Herein, we report the development of “nanococktail” nanomaterials (DTPR) with 808 nm-activated image-guided dual photothermal properties for optimized cancer therapy. Methods: In this work, we co-encapsulated AIEgens (TPA-BDTO, T) and SPs (PDPPP, P) by using maleimide terminated amphiphilic polymer (DSPE-PEG2000-Mal, D), then further conjugated the targeting ligands (RGD, R) through “click” reaction. Finally, such dual PTT nanococktail (termed as DTPR) was constructed. Results: Once DTPR upon irradiation with 808 nm laser, near-infrared fluorescence from T could be partially converted into thermal energy through fluorescence resonance energy transfer (FRET) between T and P, coupling with the original heat energy generated by the photothermal agent P itself, thus resulting in image-guided dual PTT. The photothermal conversion efficiency of DTPR reached 60.3% (dual PTT), much higher as compared to its inherent photothermal effect of only 31.5% (single PTT), which was further proved by the more severe photothermal ablation in vitro and in vivo upon 808 nm laser irradiation. Conclusion: Such smart “nanococktail” nanomaterials could be recognized as a promising photothermal nanotheranostics for image-guided cancer treatment.
关键词: semiconducting polymers,aggregation-induced emission fluorogens,fluorescence resonance energy transfer,A single laser,dual photothermal therapy
更新于2025-09-16 10:30:52
-
A single-laser alternating-frequency magneto-optical trap
摘要: In this paper, we present a technique for magneto-optical cooling and trapping of neutral atoms using a single laser. The alternating-frequency magneto-optical trap (AF-MOT) uses an agile light source that sequentially switches between cooling and repumping transition frequencies by tuning the injection current of the laser diode. We report on the experimental demonstration of such a system for 87Rb and 85Rb based on a microintegrated extended cavity diode laser performing laser frequency jumps of up to 6.6 GHz with a tuning time in the microsecond regime and a repetition rate of up to 7.6 kHz. For that, a combination of a feed-forward for coarse frequency control and a feedback for precise locking was used. We discuss the results of the AF-MOT characterization in terms of atom numbers and cloud temperature for different operation parameters.
关键词: alternating-frequency,single-laser,neutral atoms,cooling and trapping,magneto-optical trap
更新于2025-09-11 14:15:04