- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Hybrid composite of CuO with $$\hbox {g}\hbox {-C}_{3}\hbox {N}_{4}$$g-C3N4 as a photoactive catalyst: an efficient approach for the oxidation of alcohols
摘要: An eco-friendly method for the oxidative transformation of alcohols to their corresponding carbonyl compounds by using g-C3N4@CuO as a photoactive heterogeneous catalyst has been developed. The catalyst was characterized by SEM-EDX, TEM, BET surface area measurements, powder XRD, FTIR, photoluminescence and UV-Vis spectroscopy. It was found to be very effective for the conversion of both primary and secondary alcohols into aldehydes and ketones with excellent yields using tert-butyl hydrogen peroxide (TBHP) as oxidant at room temperature in the presence of visible light in aqueous medium. The catalyst can be separated from the reaction mixture by simple centrifugation and reused up to five cycles without significant loss in activity.
关键词: Nanocomposite,alcohol oxidation,copper oxide,photocatalyst,graphitic carbon nitride
更新于2025-09-23 15:23:52
-
Kinetic effects and oxidation pathways of sacrificial electron donors on the example of the photocatalytic reduction of molecular oxygen to hydrogen peroxide over illuminated titanium dioxide
摘要: Sacrificial electron donors are frequently used in photocatalytic reactions to enhance the performance of the reaction, typically short-chain alcohols as well as their respective aldehydes and acids are used. This study focuses on the differences between the individual electron donors regarding their oxidation rates, mechanistic pathways, the influence of the intermediates and their direct impact on the H2O2 generation. The individual H2O2 formation rates of 16 different electron donors, photonic and faradaic efficiencies for H2O2 production are carefully discussed. Furthermore, a new multi-reaction pathway for t-butanol oxidation is postulated and critically examined.
关键词: Alcohol oxidation,Reaction kinetics,Reaction pathway,Hydrogen peroxide,Photocatalysis,Sacrificial electron donors
更新于2025-09-23 15:22:29
-
Realizing Synergistic Effect of Electronic Modulation and Nanostructure Engineering over Graphitic Carbon Nitride for Highly Efficient Visible-Light H2 Production Coupled with Benzyl Alcohol Oxidation
摘要: Photocatalytic H2 production based on g-C3N4 faces enormous challenging issues including limited visible-light absorption, poor separation and transfer abilities of photo-generated electron-hole pairs. Herein, we realize the synergistic effect of nanostructure engineering and electronic modulation with a supramolecular assembly mediated synthesis of heteroatom doped g-C3N4 hierarchical mesoporous spheres. The favorable doping site and possible effect on electronic structure are disclosed by DFT calculation with supporting experimental analysis. Impressively, S-doped g-C3N4 delivers a 13.2 times higher H2 production rate than bulk g-C3N4 under visible-light. More importantly, as the dual functional photocatalyst for H2 production and selective oxidation of benzyl alcohol, it can exhibit outstanding activity with a H2/benzaldehyde production rate of 3.76/3.87 μmol h-1, respectively. This work not only provide a new rationale for photocatalytic performance enhancement, but also shed new light on the highly efficient utilization of solar energy by coupling H2 generation with value added chemical production.
关键词: graphitic carbon nitride,hierarchical mesoporous spheres,DFT calculation,benzyl alcohol oxidation,photocatalytic hydrogen production
更新于2025-09-23 15:19:57
-
Unraveling the impact of the Pd nanoparticle@BiVO <sub/>4</sub> /S-CN heterostructure on the photo-physical & opto-electronic properties for enhanced catalytic activity in water splitting and one-pot three-step tandem reaction
摘要: Pd nanoparticles embedded SBVCN-37 heterostructure photocatalyst is synthesized and employed in the water splitting reaction and for the synthesis of imines via one-pot tandem reaction involving photocatalytic reduction of nitrobenzene, oxidation of benzyl alcohol, followed by condensation reaction between them. Embedded Pd nanoparticles (mean diameter ~ 5-7 nm) act as an electron mediator and enhance the catalytic activity during oxidation and reduction reactions. Experimental results confirm that the light induced holes owing to its favourable redox potential oxidize N2H4 to N2 and liberate H+ ions that subsequently react with photogenerated electrons and facilitate the nitrobenzene reduction. The obtained quantum yield for benzyl alcohol oxidation and nitrobenzene reduction are calculated to be (2.08 %) and (6.53 %) at λ = 420 nm light illumination. The obtained apparent quantum yields for OER and HER are calculated to be 10.22 % and 12.72 % at 420 nm indicating the excellent potentiality of the presently investigated photocatalyst for solar fuel production. Photoelectrochemical (PEC) and time resolved & steady state photoluminescence measurements reveal that an optimum amount of Pd nanoparticles over SBVCN-37 is the crucial factor for achieving the highest photocurrent response, the lowest charge transfer resistance, and the efficient carrier’s mobility alteration leading to a prominent catalytic activity. Further, Mott-Schottky (M-S) analysis confirms that the deposition of Pd nanoparticles effectively reduces the over-potential and fine-tunes the band edge potential required for HER and OER reactions, independently.
关键词: Tandem Reaction,BiVO4,Benzyl Alcohol Oxidation,Apparent Quantum Yield,Nitrobenzene Reduction,g-C3N4,Photocatalytic H2 and O2 Production
更新于2025-09-19 17:15:36
-
Boosted photocatalytic performance of uniform hetero-nanostructures of Bi2WO6/CdS and Bi2WO6/ZnS for aerobic selective alcohol oxidation
摘要: A two-dimensional hierarchical structural photocatalyst based on Bi2WO6 was obtained via a hydrothermal method and modified using ZnS and CdS and characterized by physico-chemical techniques XRD, FTIR, SEM, EDAX, and DRS. Their photocatalytic performance toward aerobic oxidation of primary alcohols was performed under incident visible light. In optimal condition, the photocatalytic conversion by modified Bi2WO6 was boosted from 25 to 68% in comparison to bare Bi2WO6 while in all cases the selectivities were as high as 99%. This such high photocatalytic activity was confirmed by PEC and photoluminescence (PL) spectroscopy studies which are related to the improvement of charge recombination and potential energy levels of photogenerated electrons-holes pairs. A plausible mechanism was suggested using a series of scavengers during photocatalytic oxidation reactions. Also, this heterogeneous photocatalyst was reused and recovered several times without loss photocatalytic activity. So, these series of catalysts were synthesized using the green and facial method in water solvent with significant advantages of high photocatalytic reactivity in presence O2 as oxidant upon incident visible light.
关键词: Mechanism,Nanocomposite,Photocatalyst conversion,Alcohol oxidation
更新于2025-09-10 09:29:36