修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

12 条数据
?? 中文(中国)
  • [IEEE 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) - Honolulu, HI, USA (2018.7.18-2018.7.21)] 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) - Tracking Gene Expression via Light Sheet Microscopy and Computer Vision in Living Organisms

    摘要: Automated tracking of spatiotemporal gene expression using in vivo microscopy images have given great insight into understanding developmental processes in multicellular organisms. Many existing analysis tools rely on the fluorescent tagging of cell wall or cell nuclei localized proteins to assess position, orientation, and overall shape of an organism; information necessary for determining locations of gene expression activity. Particularly in plants, organism lines that have fluorescent tags can take months to develop, which can be time consuming and costly. We propose an automated solution for analyzing spatial characteristics of gene expression without the necessity of fluorescent tagged cell walls or cell nuclei. Our solution indicates, segments, and tracks gene expression using a fluorescent imaging channel of a light sheet microscope while determining gene expression location within an organism from a Brightfield (non-fluorescent) imaging channel. We use the images obtained from the Arabidopsis thaliana root as a proof of concept for our solution by studying the effects of heat shock stress on CYCLIN B1 protein production.

    关键词: computer vision,CYCLIN B1,light sheet microscopy,gene expression,Arabidopsis thaliana

    更新于2025-09-09 09:28:46

  • Identification and characterization of a core set of <scp>ROS</scp> wave‐associated transcripts involved in the systemic acquired acclimation response of Arabidopsis to excess light

    摘要: Systemic acquired acclimation (SAA) plays a key role in optimizing growth and preventing damages associated with fluctuating or abrupt changes in the plant environment. To be effective, SAA has to occur at a rapid rate and depend on rapid signaling pathways that transmit signals from affected tissues to all parts of the plant. Although recent studies identified several different rapid systemic signaling pathways that could mediate SAA, very little is known about the extent of their involvement in mediating transcriptomic responses. Here we reveal that the systemic transcriptomic response of plants to excess light stress is extensive in its context and involves an early (2 minute) and transient stage of transcript expression that includes thousands of genes. This early response is dependent on the respiratory burst oxidase homolog D protein, and the function of the reactive oxygen species (ROS) wave. We further identify a core set of transcripts associated with the ROS wave and suggest that some of these transcripts are involved in linking ROS with calcium signaling. Priming of a systemic leaf to become acclimated to a particular stress during SAA involves thousands of transcripts that display a rapid and transient expression pattern driven by the ROS wave.

    关键词: Arabidopsis thaliana,H2O2 signaling,systemic signaling,Reactive oxygen species (ROS) wave,Transcriptomics,light stress,MYB30,systemic acquired acclimation (SAA),WRKY

    更新于2025-09-09 09:28:46