修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

2578 条数据
?? 中文(中国)
  • Synthesis, Photophysical, Electrochemical and Thermal Study of Biphenyl Luminophors: Green Light Emitting Materials

    摘要: Novel luminophors of anthracene (AN) and tetracene (TN) doped biphenyl were prepared using Conventional Solid State reaction technique. Fluorescence spectroscopy, XRD, SEM, TGA-DSC and Cyclic Voltammetry techniques have been employed for photophysical, electrochemical and thermal study. The X-ray diffraction study revealed the formation of homogeneous biphenyl solid solutions with the added guests AN and TN. Fluorescent biphenyl absorbing short wave UV radiation and emitting at long wave UV radiation has been used as a solid matrix. From the fluorescence spectra it is seen that the added guests shifts the UV fluorescence of biphenyl emitting in green region of visible spectrum at 532 nm. SEM images of the prepared luminophors showed the crystallites of average size 140 nm which makes them suitable candidates for their use in Optoelectronic devices. HOMO and LUMO energy levels of the synthesized luminophors from electrochemical data observed in 5.50–5.64 eV and 3.09–3.13 eV with band gap 2.37–2.55 eV, respectively. TGA-DSC study revealed the thermal stability of prepared luminophors.

    关键词: Green light emitting novel luminophors,EET process,Optoelectronic devices

    更新于2025-09-04 15:30:14

  • Enhancing the Secrecy Performance of the Spatial Modulation Aided VLC Systems with Optical Jamming

    摘要: In order to enhance the secrecy performance of the spatial modulation (SM) aided visible light communication (VLC) system, an optical jamming aided secrecy enhancement scheme is proposed in this paper, in which transmitter (Alice) sends the optical jamming signals and the con?dential signals simultaneously with amplitude and power constraints, wherein the truncated Gaussian distribution is adopted by the optical jamming signals for the considered constraints. Additionally, with ?nite discrete support set of the channel inputs’ distribution, the corresponding secrecy performance is systematically analyzed for the optical jamming aided SM-VLC system, which includes the average mutual information (AMI), the lower bound on AMI and its closed-form expression approximation and the achievable secrecy rate. Furthermore, the power allocation problem for the proposed SM-VLC systems with optical jamming is considered. Finally, extensive simulation results are presented to validate our analytical results and the secrecy versus bit error ratio (BER) trade-off is characterized.

    关键词: physical layer security (PLS),Visible light communication (VLC),spatial modulation (SM),power allocation,achievable secrecy rate,optical jamming

    更新于2025-09-04 15:30:14

  • Cascade electronic band structured zinc oxide/ bismuth vanadate/ three-dimensional ordered macroporous titanium dioxide ternary nanocomposites for enhanced visible light photocatalysis

    摘要: Ternary zinc oxide/ bismuth vanadate/ three-dimensional ordered macroporous titanium dioxide (ZnO/BiVO4/3DOM TiO2) heterojuncted nanocomposites with cascade electronic band structures were successfully designed and synthesized for visible light photodegradation of two different molecules: Rhodamine B (RhB) and Tartrazine. The photocatalytic active species have been investigated by using electron scavenger (AgNO3) and hole scavenger (Triethanolamine: TEOA). The band edge positions of each component in tenary nanocomposites have been measured by using photoelectrochemical Mott-Schottky method and valence band XPS (VB-XPS) spectroscopy. Within the heterojunction, charges are favorably and spatially separated through the gradient potential at the interfaces. This largely suppresses the recombination of photogenerated electrons and holes. Furthermore, 3DOM inverse opal structure is beneficial for high diffusion efficiency and highly accessible surface area of reactants and light and multiple scattering for light harvesting. Consequently, these heterojuncted nanocomposites exhibit highly enhanced photocatalytic performance compared with pure BiVO4 nanostructure, and binary BiVO4/3DOM TiO2, ZnO/BiVO4 nanocomposites. A detailed mechanism of charge transfer is proposed for these ternary ZnO/BiVO4/3DOM TiO2 nanocomposites on the basis of a large series of spectroscopic and photocatalytic results. Our work demonstrates clearly that coupling multicomponent semiconductors with different energy levels of conduction and valence bands can significantly increase the photogenerated charge carriers through the efficient charge separation across their multiple interfaces. This work gives some new ideas on developing new visible light responsive nanocomposites for highly efficient solar energy utilization.

    关键词: visible light,RhB and Tartrazine,Ternary ZnO/BiVO4/3DOM TiO2 nanocomposites,photogenerated electron–hole pairs,heterojunction structures

    更新于2025-09-04 15:30:14

  • Rapid classification of micron-sized particles of sphere, cylinders and ellipsoids by diffraction image parameters combined with scattered light intensity

    摘要: Spatial distributions of light scattered by single particles correlate closely with their morphologies in terms of refractive index (RI) distribution. Diffraction imaging of scattered light under coherent excitation presents a unique approach to acquire and extract feature parameters for particle classification. A validated method has been applied in this study to accurately simulate diffraction imaging of light scattered by homogeneous particles and obtain calculated diffraction image (DI) data. The feature parameters of DI data have been extracted by the gray-level co-occurrence matrix (GLCM) algorithm. We have developed an unsupervised machine learning algorithm based on Gaussian mixture model (GMM) to classify 1965 particles made of single and double spheres, cylinders and ellipsoids with varied RI values in parameter space. It has been shown that selected GLCM parameters combined with integrated forward scatter intensity can provide effective markers for accurate and morphology based classification. For 1791 particles of the same RI, the mean accuracy values of classifying particles into 3 particle types range from 82.6% to 97.2%. These results demonstrate the strong potential of diffraction imaging method for rapid analysis and classification of nonspherical and homogeneous particles by the GMM classifiers that is very challenging in comparison to distinguishing biological cell types.

    关键词: Image analysis,Nonspherical particle analysis,Diffraction imaging,Single light scattering

    更新于2025-09-04 15:30:14

  • Tetrathiafulvalene Scaffolds Based Sensitizer on Hierarchical Porous TiO <sub/>2</sub> : Efficient Light Harvesting Material for Hydrogen Production

    摘要: In this work, a photochemical device that contains thioalkyl substituted tetrathiafulvalene dyes and hierarchical porous TiO2, has been designed and successfully employed in visible light-driven hydrogen production. The design strategy boost up the desirable photophysical properties of the catalysts and well supported from the optical, electrochemical and computational studies. The introduction of thioalkyl substituted tetrathiafulvalene dyes as light harvesting sensitizers onto the porous TiO2 triggers unprecedented high rate of hydrogen evolution. This study focuses on the role of thiafulvalene scaffold which can promote ultrafast interfacial electron injection from excited state dye into the hierarchical porous TiO2 conduction band. The purposeful construction of this integrated composite G3T3 (dye content 1.0 μmol in 10 mg Pt-TiO2 composite) significantly increases the hydrogen production rate of 24560 μmol.h-1g-1 cat with high apparent quantum yield (AQY) ~ 41%. In the study, both sensitizers absorption onset extends up to 500 nm in solution and 600 nm on hierarchical porous TiO2. Density functional theory (DFT) in the present study described that the HOMO levels are delocalized on anthracene as well as tetrathiafulvalene donor units, and LUMO covers on to the carboxylate anchoring group in both dyes. This study unveiled first time that a tetrathiafulvalene scaffolds in porous TiO2 attributes to positive synergistic effects in hydrogen production.

    关键词: Tetrathiafulvalene,Hydrogen Production,Photocatalysis,Hierarchical Porous TiO2,Visible Light

    更新于2025-09-04 15:30:14

  • Langmuir–Hinshelwood and Light-Intensity Dependence Analyses of Photocatalytic Oxidation Rates by Two-Dimensional-Ladder Kinetic Simulation

    摘要: Though photocatalytic reactions gather enormous attention, dependences of light intensity and reactant concentration have not been concurrently expressed clearly. In the previously reported studies, a quadratic formula equation obtained from the conventional analysis using the concentration of electron?hole pairs has been modified. In this report we numerically simulated the reaction with a two-dimensional(2D)-ladder kinetics without using electron?hole concentrations. In fundamental processes, (i) photoabsorption, (ii) reduction, (iii) oxidation, and (iv) recombination, were treated as the transitions between the states of each powder characterized by the numbers of possessing negative and positive charges. Through the numerical 2D-ladder simulation with various rate constants, the light-intensity (I) dependence of the oxidation rate was found to be fully expressed by involving the square of the intrinsic quantum yield into the square root part of the well-known quadratic formula equation. The square root dependence of the reaction rate, r ∝ I1/2, could be expected only when the rate of the reduction is extremely smaller than the recombination rate at the normal light intensity. Then, the resultant equations obtained with this 2D-ladder simulation were transformed to the equation for Langmuir?Hinshelwood kinetics with two parameters, rL and KL, which correspond to the intrinsic oxidation rate and the adsorption equilibrium constant of the reactant, respectively. Light-intensity dependence of KL was expressed by adding two terms proportional to I2 to both the adsorption and desorption rate constants. The reported experimental data sets of the decomposition rates for phenol and 4-chlorophenol were fitted with the proposed equation, and then from the obtained parameter values the formation rate of (cid:129)O2? could be estimated and found to be compatible to that which has been experimentally measured. Thus, the present analytical treatment is actually the simple and useful method to understand the dependencies of reactant concentration and light-intensity on the photocatalytic oxidation rates.

    关键词: reactant concentration,photocatalytic reactions,light intensity,Langmuir?Hinshelwood kinetics,two-dimensional-ladder kinetics

    更新于2025-09-04 15:30:14

  • Selective Ferroelectric BiOI/Bi4Ti3O12 Heterostructures For Visible-light-driven Photocatalysis

    摘要: Ferroelectric-photocatalyst/photocatalyst heterojunctions have very attractive photocatalytic activities. Beside enhanced charge carrier separation due to their internal electric fields, charge transfer could be even further enhanced by designing the heterojunction interface. In this work, the polarization-adsorption interaction that exists in ferroelectric materials was employed for successful deposition of BiOI on specific surfaces of Bi4Ti3O12 plates in the dark at room temperature, where the positively polarized region was found. The crystal structure, morphology, and composition of samples were confirmed by X-ray diffraction, field emission scanning electron microscopy, and X-ray photoelectron spectroscopy, respectively. Higher photocatalytic activity was achieved by the use of heterojunctions, with the reason behind the enhancement of activity confirmed to be the modified band structure, which contributed to the transfer of photoelectrons from Bi4Ti3O12 to BiOI, the increased visible light absorption, the increased active site area of positively polarized Bi4Ti3O12, and the elimination of the screening layer, which contributes impedance in charge transfer.

    关键词: Visible-light-driven,Photocatalysis,Heterostructures,BiOI/Bi4Ti3O12,Ferroelectric

    更新于2025-09-04 15:30:14

  • Charge transport layers manage mobility and Carrier density balance in light-emitting layers influencing the operational stability of organic light emitting diodes

    摘要: Organic light emitting diodes (OLEDs) consist of several organic layers, including the charge injection layer, charge transport layer, and light emitting layer (EML). Of these layers, the charge transport layer is crucial for ensuring device longevity, but its overall effects on charge transport and corresponding device stability are poorly understood. Herein we report the factors influencing differences in lifetime between two OLEDs with different hole transporting layers (HTLs). Comprehensive electrical analysis of the materials and the devices reveals that the mobility, accumulation, trapping, and the transport path of holes in the EML are totally changed by the HTLs. The charge transport layers affect mobility and carrier density balance in the EML through the modification of the charge transport path and the energetic barrier. This results in a reduction of overbalanced polaron density, which is critical for bond dissociation in excitonic interactions. Consequently, device lifetime is increased sevenfold through modification of the HTL structure without any alteration of the EML. These results imply that the analysis of polaronic transport through impedance spectroscopy is a crucial step in determining the requisite electrical properties for charge transport layers, with a view to maximizing the operational stability of OLEDs.

    关键词: charge transport,Organic light-emitting diodes,device stability,impedance spectroscopy

    更新于2025-09-04 15:30:14

  • Metal–Organic Frameworks for Photocatalysis and Photothermal Catalysis

    摘要: To meet the ever-increasing global demand for energy, conversion of solar energy to chemical/thermal energy is very promising. Light-mediated catalysis, including photocatalysis (organic transformations, water splitting, CO2 reduction, etc.) and photothermal catalysis play key roles in solar to chemical/thermal energy conversion via the light?matter interaction. The major challenges in traditional semiconductor photocatalysts include insufficient sunlight utilization, charge carrier recombination, limited exposure of active sites, and particularly the difficulty of understanding the structure?activity relationship. Metal?organic frameworks (MOFs), featuring semiconductor-like behavior, have recently captured broad interest toward photocatalysis and photothermal catalysis because of their well-defined and tailorable porous structures, high surface areas, etc. These advantages are beneficial for rational structural modulation for improved light harvesting and charge separation as well as other effects, greatly helping to address the aforementioned challenges and especially facilitating the establishment of the structure?activity relationship. Therefore, it is increasingly important to summarize this research field and provide in-depth insight into MOF-based photocatalysis and photothermal catalysis to accelerate the future development.

    关键词: Charge separation,Photocatalysis,Light harvesting,Solar energy conversion,Photothermal catalysis,Metal?organic frameworks

    更新于2025-09-04 15:30:14

  • Magnetically Recyclable MoS <sub/>2</sub> /Fe <sub/>3</sub> O <sub/>4</sub> Hybrid Composite as Visible Light Responsive Photocatalyst with Enhanced Photocatalytic Performance

    摘要: Photocatalysis is one of the most promising technologies in wastewater treatment. However, the inactivity to visible light and the inconvenience to recycle severely limit its practical application. In this work, via a facile hydrothermal method, Fe3O4 NPs were integrated onto the surfaces of 3D ball-flower-like MoS2 microspheres as efficiently visible light responsive and magnetically recyclable photocatalysts. Experimental results indicate that, an optimal loading amount (20 wt.%) of Fe3O4 NPs can not only effectively enhance the photocatalytic ability of the MoS2/Fe3O4 (MF) hybrid composite with approximately 2 times better than pure MoS2, but also make it conveniently recycle from water by an external magnetic field. The photoelectrochemical studies also reveal that the incorporation of Fe3O4 NPs can effectively enhance the charge transfer rate and accelerate separation of photo-induced charge carriers. The surface catalytic mechanism of MF hybrid composite was also explored through XPS spectra. With both the excellent photocatalytic performance and magnetical recyclability, the 20wt%-MF hybrid composite is considered to be a promising and competitive photocatalyst for wastewater treatment utilizing solar energy.

    关键词: magnetical recyclability,Fe3O4 NPs,MoS2,photocatalyst,visible light responsive

    更新于2025-09-04 15:30:14