- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Coupled retrieval of the three phases of water from spaceborne imaging spectroscopy measurements
摘要: Measurements of reflected solar radiation by imaging spectrometers can quantify water in different states (solid, liquid, gas) thanks to the discriminative absorption shapes. We developed a retrieval method to quantify the amount of water in each of the three states from spaceborne imaging spectroscopy data, such as those from the German EnMAP mission. The retrieval couples atmospheric radiative transfer simulations from the MODTRAN5 radiative transfer code to a surface reflectance model based on the Beer-Lambert law. The model is inverted on a per-pixel basis using a maximum likelihood estimation formalism. Based on a unique coupling of the canopy reflectance model HySimCaR and the EnMAP end-to-end simulation tool EeteS, we performed a sensitivity analysis by comparing the retrieved values with the simulation input leading to an R2 of 0.991 for water vapor and 0.965 for liquid water. Furthermore, we applied the algorithm to airborne AVIRIS-C data to demonstrate the ability to map snow/ice extent as well as to a CHRIS-PROBA dataset for which concurrent field measurements of canopy water content were available. The comparison between the retrievals and the ground measurements showed an overall R2 of 0.80 for multiple crop types and a remarkable clustering in the regression analysis indicating a dependency of the retrieved water content from the physical structure of the vegetation. In addition, the algorithm is able to produce smoother and more physically-plausible water vapor maps than the ones from the band ratio approaches used for multispectral data, since biases due to background reflectance are reduced. The demonstrated potential of imaging spectroscopy to provide accurate quantitative measures of water from space will be further exploited using upcoming spaceborne imaging spectroscopy missions like PRISMA or EnMAP.
关键词: Atmospheric correction,EnMAP,Canopy water content,Water vapor,Imaging spectroscopy
更新于2025-09-23 15:21:01
-
Physically-Based Retrieval of Canopy Equivalent Water Thickness Using Hyperspectral Data
摘要: Quantitative equivalent water thickness on canopy level (EWTcanopy) is an important land surface variable and retrieving EWTcanopy from remote sensing has been targeted by many studies. However, the effect of radiative penetration into the canopy has not been fully understood. Therefore, in this study the Beer-Lambert law is applied to inversely determine water content information in the 930 to 1060 nm range of canopy reflectance from measured winter wheat and corn spectra collected in 2015, 2017, and 2018. The spectral model was calibrated using a look-up-table (LUT) of 50,000 PROSPECT spectra. Internal model validation was performed using two leaf optical properties datasets (LOPEX93 and ANGERS). Destructive in-situ measurements of water content were collected separately for leaves, stalks, and fruits. Correlation between measured and modelled water content was most promising for leaves and ears in case of wheat, reaching coefficients of determination (R2) up to 0.72 and relative RMSE (rRMSE) of 26% and in case of corn for the leaf fraction only (R2 = 0.86, rRMSE = 23%). These findings indicate that, depending on the crop type and its structure, different parts of the canopy are observed by optical sensors. The results from the Munich-North-Isar test sites indicated that plant compartment specific EWTcanopy allows us to deduce more information about the physical meaning of model results than from equivalent water thickness on leaf level (EWT) which is upscaled to canopy water content (CWC) by multiplication of the leaf area index (LAI). Therefore, it is suggested to collect EWTcanopy data and corresponding reflectance for different crop types over the entire growing cycle. Nevertheless, the calibrated model proved to be transferable in time and space and thus can be applied for fast and effective retrieval of EWTcanopy in the scope of future hyperspectral satellite missions.
关键词: EnMAP,hyperspectral,spectroscopy,equivalent water thickness,canopy water content,agriculture
更新于2025-09-04 15:30:14
-
[IEEE IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium - Valencia, Spain (2018.7.22-2018.7.27)] IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium - Hyperspectral Retrieval of Canopy Water Content Through Inversion of the Beer-Lambert Law
摘要: The retrieval of quantitative equivalent water thickness on canopy level (EWTc) is an agriculturally important task for hyperspectral remote sensing. In this study the Beer-Lambert law is applied to inversely determine water content from measured winter wheat spectra collected in 2015 and 2017. The spectral model is calibrated using a look-up-table (LUT) of 50.000 PROSPECT spectra. Validation was performed using two leaf optical properties datasets (LOPEX93 and ANGERS) and in-situ data acquired in Southern Germany. After considering destructive in-situ water content measurements separately for leaves, stems, and fruits, results indicate optically active plant water by plant component in the 930 to 1060 nm range of canopy reflectance. Results for spectrally derived EWTc were most promising for leaves and ears reaching coefficients of determination up to 0.75 and a normalized RMSE (nRMSE) of 24% between measured and estimated canopy water content.
关键词: EnMAP,hyperspectral,agriculture,canopy water content,spectroscopy
更新于2025-09-04 15:30:14