- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Visible light photocatalytic mineralization of bisphenol A by carbon and oxygen dual-doped graphitic carbon nitride
摘要: A facile thermal polymerization was applied to synthesize carbon and oxygen dual-doped graphitic carbon nitride (MACN) with controllable electronic band structure using malonic acid and urea as precursors. The C and O atoms substituted the sp2 N atom in graphitic carbon nitride (CN). The 1MACN (1 represented that the weight ratio of malonic acid to urea is 1% during the synthesis) with optimal band structure could decompose 15 ppm bisphenol A (BPA) within 150 min, and the mineralization rate reached to 52%. The superior photocatalytic performance of 1MACN was mainly ascribed to electronic band structure together with optical properties. On the one hand, the formation of delocalized big p bonds favored the electrons transfer after the introducing of carbon atoms. On the other hand, a positive charge density existed on the C atoms because of high electronegativity of contiguous O (3.44) that substituted N compared with C (2.55), which could attribute to high activity of MACN catalyst. The study will contribute to the further improvement of visible-light photocatalytic BPA degradation and mineralization.
关键词: BPA mineralization,Carbon-oxygen dual-doping,Visible-light photocatalytic,Graphitic carbon nitride
更新于2025-09-23 15:23:52