修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

5 条数据
?? 中文(中国)
  • Hybrid fluorescent liquid crystalline composites: directed assembly of quantum dots in liquid crystalline block copolymer matrices

    摘要: Hybrid ?uorescent liquid crystalline (LC) composites containing inorganic quantum dots (QDs) are promising materials for many applications in optics, nanophotonics and display technology, combining the superior emission capability of QDs with the externally controllable optical properties of LCs. In this work, we propose the hybrid LC composites that were obtained by embedding CdSe/ZnS QDs into a series of host LC block copolymers of di?erent architectures by means of a two-stage ligand exchange procedure. The ABA/BAB triblock copolymers and AB diblock copolymers with di?erent polymerization degrees are composed of nematogenic phenyl benzoate acrylic monomer units and poly(4-vinylpyridine) blocks, which are capable of binding to the QD surface. Our results clearly show that the spatial distribution of QDs within composite ?lms as well as the formation of QD aggregates can be programed by varying the structure of the host block copolymer. The obtained composites form a nematic LC phase, with isotropization temperatures being close to those of the initial host block copolymers. In addition, the in?uence of the molecular architecture of the host block copolymers on ?uorescence properties of the obtained composites is considered. The described strategy for the QD assembly should provide a robust and conventional route for the design of highly ordered hierarchical hybrid materials for many practical applications.

    关键词: liquid crystalline block copolymer matrices,ligand exchange procedure,fluorescence properties,CdSe/ZnS QDs,nematic LC phase,Hybrid ?uorescent liquid crystalline composites,quantum dots

    更新于2025-09-23 15:19:57

  • Efficient Perovskite Solar Cells Based on CdSe/ZnS Quantum Dots Electron Transporting Layer with Superior UV Stability

    摘要: Stability is the main challenge in the field of perovskite solar cells (PSCs). Finding new strategies is required to protect the PSCs from deteriorated agents such as humidity, heating, and illumination. In this study, we propose a new electron transporting layer (ETL), i.e., CdSe/ZnS quantum dots (QDs) for the fabrication of efficient and stable PSCs. CdSe/ZnS QDs layer not only works as an ETL but also has down-shifting property, which can improve both efficiency and stability of the PSCs. Using CdSe/ZnS QDs ETL with green emission, a PSC with maximum power conversion efficiency (PCE) of 18% is achieved. More importantly, our device shows great UV stability much better than the device with TiO2 ETL, where it retains 90% of its initial PCE value after 75 h under continuous UV illumination.

    关键词: down-shifting layer,perovskite,solar cell,CdSe/ZnS QDs,stability,UV stability

    更新于2025-09-23 15:19:57

  • Green emitted CdSe@ZnS quantum dots for FLIM and STED imaging applications

    摘要: Inorganic quantum dots (QDs) have excellent optical properties, such as high fluorescence intensity, excellent photostability and tunable emission wavelength, etc., facilitating them to be used as labels and probes for bioimaging. In this study, CdSe@ZnS QDs are used as probes for Fluorescence lifetime imaging microscope (FLIM) and stimulated emission depletion (STED) nanoscopy imaging. The emission peak of CdSe@ZnS QDs centered at 526 nm with a narrow width of 19 nm and the photoluminescence quantum yield (PLQY) was 64%. The QDs presented excellent anti-photobleaching property which can be irradiated for 400 min by STED laser with 39.8 mW. The lateral resolution of 42.0 nm is demonstrated for single QDs under STED laser (27.5 mW) irradiation. Furthermore, the CdSe@ZnS QDs were for the first time used to successfully label the lysosomes of living HeLa cells and 81.5 nm lateral resolution is obtained indicating the available super-resolution applications in living cells for inorganic QD probes. Meanwhile, Eca-109 cells labeled with the CdSe@ZnS QDs was observed with FLIM, and their fluorescence lifetime was around 3.1 ns, consistent with the in vitro value, suggesting that the QDs could act as a satisfactory probe in further FLIM-STED experiments.

    关键词: CdSe@ZnS QDs,living cells,STED,FLIM

    更新于2025-09-19 17:13:59

  • Development of Ratiometric Fluorescence Sensors Based on CdSe/ZnS Quantum Dots for the Detection of Hydrogen Peroxide

    摘要: In this study, carboxyl group functionalized-CdSe/ZnS quantum dots (QDs) and aminofluorescein (AF)-encapsulated polymer particles were synthesized and immobilized to a sol–gel mixture of glycidoxypropyl trimethoxysilane (GPTMS) and aminopropyl trimethoxysilane (APTMS) for the fabrication of a hydrogen peroxide-sensing membrane. CdSe/ZnS QDs were used for the redox reaction of hydrogen peroxide (H2O2) via a reductive pathway by transferring electrons to the acceptor that led to fluorescence quenching of QDs, while AF was used as a reference dye. Herein, the ratiometric fluorescence intensity of CdSe/ZnS QDs and AF was proportional to the concentration of hydrogen peroxide. The fluorescence membrane (i.e., QD–AF membrane) could detect hydrogen peroxide in linear detection ranges from 0.1 to 1.0 mM with a detection limit (LOD) of 0.016 mM and from 1.0 to 10 mM with an LOD of 0.058 mM. The sensitivity of the QD–AF membrane was increased by immobilizing horseradish peroxidase (HRP) over the surface of the QD–AF membrane (i.e., HRP–QD–AF membrane). The HRP–QD–AF membrane had an LOD of 0.011 mM for 0.1–1 mM H2O2 and an LOD of 0.068 mM for 1–10 mM H2O2. It showed higher sensitivity than the QD–AF membrane only, although both membranes had good selectivity. The HRP–QD–AF membrane could be applied to determine the concentration of hydrogen peroxide in wastewater, while the QD–AF membrane could be employed for the detection of α-ketobutyrate.

    关键词: ratiometric fluorescence QD membrane,CdSe/ZnS QDs,hydrogen peroxide,α-ketobutyrate,redox reaction

    更新于2025-09-12 10:27:22

  • Photoluminescence Decay of Colloidal Quantum Dots: Reversible Trapping and the Nature of the Relevant Trap States

    摘要: Interfaces are crucial factors in shaping the properties of colloidal quantum dots (QDs), in particular the size-dependent optical properties that are a hallmark of these materials. However, the role played by the interfaces associated with QDs on the kinetics of photoluminescence (PL) decay of these nanocrystals is not fully understood even for the most extensively investigated II-VI QDs. In particular, interfaces are a hotbed of trapping sites over which control is essential for efficient performance of QD-based devices, because traps condition PL lifetimes and may be related to PL intermittency. In this work, we analyze the room-temperature PL decay of drop-cast films of CdSe/ZnS QDs varying a number of factors (casting solvent, capping ligands, core/shell interface character). We show how the use of a function that accounts for reversible trapping of photogenerated charge carriers with physically meaningful parameters (time constant, trapping and detrapping rate constants, and average number of traps per QD) can provide valuable information concerning the relevant interfaces, and therefore the nature of the trap states, involved in the recombination of those charge carriers. This approach should be applicable to QDs of a variety of compositions as well as materials beyond inorganic semiconductors.

    关键词: photoluminescence decay,trap states,reversible trapping,CdSe/ZnS QDs,colloidal quantum dots

    更新于2025-09-11 14:15:04