修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

6 条数据
?? 中文(中国)
  • Sensitive and selective detection of Cu2+ ions based on fluorescent Ag nanoparticles synthesized by R-phycoerythrin from marine algae Porphyra yezoensis

    摘要: In this study, using a natural and green protein R-phycoerythrin (R-PE) extracted from marine Porphyra yezoensis as the stabilizer and reducer, silver nanoparticles (AgNPs) were synthesized. Based on this, a highly sensitive and selective method for the detection of Cu2+ ions was developed using R-PE-AgNPs as fluorescent probe. The interactions between R-PE-AgNPs and Cu2+ ions were systematically characterized by fluorescence spectroscopy, transmission electron microscopy (TEM), elemental mapping and Fourier transform infrared (FTIR). It was found that Cu2+ ions could cause aggregation of the R-PE-AgNPs, accompanied by the greatly increased particle size. Importantly, the method offered a wide linear detection range from 0 μM to 100.0 μM with a detection limit of 0.0190 μM. Moreover, the proposed method was successfully applied to analyze Cu2+ ions in tap water and lake water samples, acquiring satisfactory recovery between 91.6% and 102.2%. Such a green, fast and cost-effective fluorimetric method of the R-PE-AgNPs probe has great potential for tracing Cu2+ ions in diverse aqueous media.

    关键词: Cu2+ detection,Silver nanoparticles,R-phycoerythrin,Water

    更新于2025-09-23 15:21:01

  • Self-Assembly of Europium-Containing Polyoxometalates/Tetra- <i>n</i> -alkyl Ammonium with Enhanced Emission for Cu <sup>2+</sup> Detection

    摘要: Lanthanide-containing polyoxometalates (POMs) can be used to detect various materials, but their luminescence in water has suffered enormous limitations due to the strong fluorescence quenching. Herein, to resolve this problem, three-dimensional nanoparticles built by mixed Weakley-type europium-containing POMs (Na9[EuW10O36]·32H2O, abbreviated to EuW10) and tetra-n-alkyl ammonium (TA) with enhanced fluorescent properties have been designed in aqueous solution using an ionic self-assembly (ISA) technique, which is mainly driven by the electrostatic interaction between EuW10 and TA. The morphology and fluorescent properties of the system as well as some influencing factors (alkyl chain length, amino group, and inorganic salt concentration) were systematically investigated. The results indicated that the fluorescent intensity of EuW10/tetramethylammonium bromide (TMAB) composite increased about 14 times, whereas the extent of increase of fluorescence for EuW10/tetraethylammonium bromide (TEAB) and EuW10/tetrabutylammonium bromide (TMAB) composites gradually decrease due to the bulkier steric hindrance of the longer alkyl chain. Besides, the luminescence of EuW10/TMAB nanoparticles is pH responsive, and the reversibility of their structures and luminescence can be realized upon the addition of NaOH/HCl. Moreover, the EuW10/TMAB system also shows great fluorescence-sensing behavior, which could detect Cu2+ with a detection limit of 0.15 μM. Our work provides a facile construction strategy for a functional fluorescent complex via POMs-based supramolecular self-assembly in aqueous solution, which will be further used in biomarkers and sensors.

    关键词: Cu2+ detection,fluorescence enhancement,ionic self-assembly,lanthanide-containing polyoxometalates,pH-responsive

    更新于2025-09-23 15:21:01

  • Black phosphorus quantum dots as novel electrogenerated chemiluminescence emitters for the detection of Cu2+

    摘要: For the first time, electrochemiluminescence (ECL) emission was observed from black phosphorus quantum dots (BPQDs) in the presence of K2S2O8 as the co-reactant. The potential application of BPQDs in ECL analytical chemistry was also demonstrated using Cu2+ as an example.

    关键词: Cu2+ detection,black phosphorus quantum dots,electrochemiluminescence

    更新于2025-09-23 15:19:57

  • Amphipathic carbon dots with solvent-dependent optical properties and sensing application

    摘要: Carbon dots (CDs) have been regarded as novel heavy-metal-free fluorescent materials because of their prominent optical features. In this work, one type of amphipathic CDs is prepared by facile one-step solvothermal treatment of p-Phenylenediamine. The obtained CDs own numerous surface function groups which endow them prominent dispersibility in different solvents. Absorption, steady-state and time-resolved spectroscopy have been adopted to investigate the mutual influence between the surface groups and different solvent molecules on the optical properties of the CDs. Strong solvatochromic behavior with tunable emission from blue to green and strict excitation-independent emission characteristic can be observed when the as-prepared CDs are dissolved in different solvents, suggesting their feasible sensing applications as an alternative of solvatochromic dye molecules. Furthermore, highly selective detection of Cu2+ ions using the as-synthesized CDs as sensing probes is achieved. It is expected that the investigated CDs with solvent-dependent optical properties as well as selective Cu2+ detection may have broad application prospects in bioimaging and biodetecting.

    关键词: Cu2+ detection,Optical properties,Solvent-dependent,Carbon dots

    更新于2025-09-19 17:15:36

  • Facile and highly effective synthesis of nitrogen-doped graphene quantum dots as a fluorescent sensing probe for Cu2+ detection

    摘要: Nitrogen-doped graphene quantum dots (N-GQDs) with high blue fluorescence efficiency were synthesized by the hydrothermal method from p-Phenylenediamine and p-Coumaric acid. The N-GQDs possess several superiorities, most significantly in excellent solubility and superior photostability. Besides, the as-prepared N-GQDs exhibit a uniform size distribution with a diameter of about 3.8±0.5 nm. After dispersing the N-GQDs in water, the formed aqueous solution still presents a stable and homogeneous phase even after 2 months at room temperature. The N-GQD dispersion was further utilized as sensing probes for the selective detection of copper ions (Cu2+), which is realized by the photoluminescence (PL) quenching of N-GQDs after adding Cu2+. The detection limit for Cu2+ was found to be 57 nM L-1, with superior selectivity in the presence of other commonly interfering metal ions. The presented results in this study provide a facile and high-efficiency method for synthesizing N-GQDs, with ultra-high detectivity and selectivity for Cu2+ detection, offering numerous opportunities for the development of biosensing, bioimaging, environment monitoring, and others.

    关键词: Nitrogen-doped graphene quantum dots,Hydrothermal method,Photoluminescence quenching,Cu2+ detection

    更新于2025-09-19 17:13:59

  • Water-soluble ZnO quantum dots modified by (3-aminopropyl)triethoxysilane: The promising fluorescent probe for the selective detection of Cu2+ ion in drinking water

    摘要: Copper, as an essential element in human body, can have adverse impact on environment and healthy individuals if it is excessive. So it is necessary to establish a rapid and effective method for detecting Cu2+. In this work, we describe a method for determination of Cu2+ based on water-soluble ZnO quantum dots (QDs) modified with (3-aminopropyl)triethoxysilane (APTEs). The ZnO QDs functionalized with APTEs (NH2-ZnO QDs) synthesized by a simple sol-gel method and displayed strong yellow-green fluorescence with a peak at 535 nm under 350 nm excitation. High-resolution transmission electron microscopy, Fourier transform infrared spectroscopy, luminescence, and UV-visible absorption spectroscopy were used to characterize the NH2-ZnO QDs. In addition, the emission from NH2-ZnO QDs was selectively quenched upon addition of Cu2+. Therefore, this finding was used to design a fluorescent probe based on NH2-ZnO QDs to detect Cu2+ in water solution, and the linear relationships were 2-20 nM and 1-100 μM respectively, with detection limit for Cu2+ at 1.72 nM (on the basis of 3σ/slope criterion). This fluorescent probe had also been applied in real water sample to testify its availability in drinking water. Furthermore, the quenching mechanism was studied by measurements of UV-visible absorption spectra and fluorescent lifetime of ZnO QDs, which may be attributed to the aggregation induced by Cu2+ and the dynamic quenching existing energy transfer between QDs and Cu2+.

    关键词: Drinking water,Water-soluble,Fluorescent probe,Cu2+ detection,ZnO QDs,Quenching mechanism

    更新于2025-09-16 10:30:52