修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

3 条数据
?? 中文(中国)
  • Perdeuterated conjugated polymers for ultralowa??frequency magnetic resonance of OLEDs

    摘要: Formation of excitons in OLEDs is spin dependent and can be controlled by electron-paramagnetic resonance, affecting device resistance and electroluminescence yield. We explore electrically detected magnetic resonance in the regime of very low magnetic fields (<1mT). A pronounced feature emerges at zero field in addition to the conventional spin-? Zeeman resonance for which the Larmor frequency matches that of the incident radiation. By comparing a conventional π-conjugated polymer as the active material to a perdeuterated analogue, we demonstrate the interplay between zero-field feature and local hyperfine fields. The zero-field peak results from a quasistatic magnetic-field effect of the RF radiation for periods comparable to the carrier-pair lifetime. Zeeman resonances are resolved down to 3.2MHz, approximately twice the Larmor frequency of an electron in Earth’s field. However, since reducing hyperfine fields sharpens the Zeeman peak at the cost of an increased zero-field peak, we suggest that this result constitutes a fundamental low-field limit of magnetic resonance in carrier-pair-based systems. OLEDs offer an alternative solid-state platform to investigate the radical-pair mechanism of magnetic-field effects in photochemical reactions, allowing models of biological magnetoreception to be explored by measuring spin decoherence directly in the time domain.

    关键词: Deuteration,Magnetic resonance,Isotopes,Conjugated Polymers,Organic light-emitting diodes

    更新于2025-09-23 15:19:57

  • Perdeuterated conjugated polymers for ultralowa??frequency magnetic resonance of OLEDs

    摘要: The formation of excitons in OLEDs is spin dependent and can be controlled by electron-paramagnetic resonance, affecting device resistance and electroluminescence yield. We explore electrically detected magnetic resonance in the regime of very low magnetic fields (< 1 mT). A pronounced feature emerges at zero field in addition to the conventional spin-1=2 Zeeman resonance for which the Larmor frequency matches that of the incident radiation. By comparing a conventional p-conjugated polymer as the active material to a perdeuterated analogue, we demonstrate the interplay between the zero-field feature and local hyperfine fields. The zero-field peak results from a quasistatic magnetic-field effect of the RF radiation for periods comparable to the carrier-pair lifetime. Zeeman resonances are resolved down to 3.2 MHz, approximately twice the Larmor frequency of an electron in Earth(cid:3)s field. However, since reducing hyperfine fields sharpens the Zeeman peak at the cost of an increased zero-field peak, we suggest that this result may constitute a fundamental low-field limit of magnetic resonance in carrier-pair-based systems. OLEDs offer an alternative solid-state platform to investigate the radical-pair mechanism of magnetic-field effects in photochemical reactions, allowing models of biological magnetoreception to be tested by measuring spin decoherence directly in the time domain by pulsed experiments.

    关键词: conjugated polymers,deuteration,magnetic resonance,isotopes,organic light-emitting diodes

    更新于2025-09-23 15:19:57

  • [ACS Symposium Series] Raman Spectroscopy in the Undergraduate Curriculum Volume 1305 || Connecting Organic and Physical Chemistry Students with Raman Spectroscopy

    摘要: The profile of Raman spectroscopy may be elevated in the undergraduate chemistry curriculum by intentionally tying together students’ experiences in the organic and physical chemistry laboratories. In this way the valuable role Raman spectroscopy can play in structure elucidation is highlighted. The Committee on Professional Training of the American Chemical Society includes the category of optical molecular spectroscopy (e.g., IR, UV-Vis, Raman, and fluorescence spectroscopies) as an option in the panel of instruments required for certification. To the authors’ knowledge there are no Raman spectroscopy experiments that build directly on the analysis of compounds synthesized by students in a prior course for the intended purpose of scaffolding the curriculum. This chapter highlights the roles Raman spectroscopy may play in the determination of molecular structure when used in conjunction with other, more common techniques. Indeed, direct comparison to infrared spectroscopy holds the potential to reinforce that technique and its applications while introducing the study of Raman spectra. A set of three reaction products from electrophilic aromatic substitution, Diels-Alder, and aldol condensation (this including site-specific deuteration) is explored. All of these reactions are currently part of the organic chemistry curriculum. By combining analyses performed in organic chemistry with new laboratories written for the physical chemistry laboratory the authors hope to impress upon undergraduates the value of Raman spectroscopy in a context that builds on their previous experiences with other molecular spectroscopy methods.

    关键词: structure elucidation,undergraduate chemistry curriculum,electrophilic aromatic substitution,Diels-Alder reaction,Raman spectroscopy,infrared spectroscopy,deuteration,physical chemistry,aldol condensation,organic chemistry

    更新于2025-09-04 15:30:14