修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

9 条数据
?? 中文(中国)
  • [IEEE 2018 24th International Conference on Pattern Recognition (ICPR) - Beijing (2018.8.20-2018.8.24)] 2018 24th International Conference on Pattern Recognition (ICPR) - An Efficient Approach for Polyps Detection in Endoscopic Videos Based on Faster R-CNN

    摘要: Polyps have long been considered as one of the major etiologies to colorectal cancer which is a fatal disease around the world, thus early detection and recognition of polyps plays a crucial role in clinical routines. Accurate diagnoses of polyps through endoscopes operated by physicians becomes a challenging task not only due to the varying expertise of physicians, but also the inherent nature of endoscopic inspections. To facilitate this process, computer-aid techniques that emphasize on fully-conventional image processing and novel machine learning enhanced approaches have been dedicatedly designed for polyp detection in endoscopic videos or images. Among all proposed algorithms, deep learning based methods take the lead in terms of multiple metrics in evolutions for algorithmic performance. In this work, a highly effective model, namely the faster region-based convolutional neural network (Faster R-CNN) is implemented for polyp detection. In comparison with the reported results of the state-of-the-art approaches on polyps detection, extensive experiments demonstrate that the Faster R-CNN achieves very competing results, and it is an efficient approach for clinical practice.

    关键词: computer-aided diagnosis,deep learning,Faster R-CNN,polyp detection,endoscopic videos

    更新于2025-09-23 15:23:52

  • [IEEE 2018 3rd International Conference on Mechanical, Control and Computer Engineering (ICMCCE) - Huhhot (2018.9.14-2018.9.16)] 2018 3rd International Conference on Mechanical, Control and Computer Engineering (ICMCCE) - A Remote Sensing Image Key Target Recognition System Design Based on Faster R-CNN

    摘要: Aiming at the problem of traditional low-level recognition of key targets in remote sensing images, a method for target detection and recognition based on Faster R-CNN is proposed. Firstly, the open source remote sensing image data set NWPU VHR-10 dataset is converted into VOC 2007 format as the training sets and test sets. Secondly, according to the training set category information, the hyper-parameters of the neural network are refined, and then the training set is trained using the Faster R-CNN neural network to generate a model. Finally, this model is used to detect unknown remote sensing images and identify important targets. The simulation results show that the method has high recognition accuracy and speed, and can provide reference for recognition of the key targets of remote sensing images.

    关键词: Faster R-CNN,convolution neural network,deep learning,key target recognition,remote sensing image detection

    更新于2025-09-23 15:22:29

  • [IEEE 2018 China International SAR Symposium (CISS) - Shanghai (2018.10.10-2018.10.12)] 2018 China International SAR Symposium (CISS) - A Fast Target Detection Method for SAR Image Based on Electromagnetic Characteristics

    摘要: Target detection for remote sensing images which contain optical images and radar images has attracted lots of relative researchers. With the development of deep learning, target detection for optical images has been developing towards high accuracy and real-time detection. High resolution optical images reflect geometric features of the object. Unlike optical images, SAR images reflect the electromagnetic characteristics of the target, so the SAR image detection which uses optical image detection algorithm will lead to weak detection performance. This paper studies a fast target detection algorithm for SAR images which fused electromagnetic characteristics and geometric features through support vector machine. The algorithm is based on the Faster R-CNN framework enabling nearly cost-free target detection.

    关键词: real-time detection,scattering center model,electromagnetic characteristics,Faster R-CNN,target detection

    更新于2025-09-23 15:22:29

  • An Efficient and Robust Iris Segmentation Algorithm Using Deep Learning

    摘要: Iris segmentation is a critical step in the entire iris recognition procedure. Most of the state-of-the-art iris segmentation algorithms are based on edge information. However, a large number of noisy edge points detected by a normal edge-based detector in an image with specular reflection or other obstacles will mislead the pupillary boundary and limbus boundary localization. In this paper, we present a combination method of learning-based and edge-based algorithms for iris segmentation. A well-designed Faster R-CNN with only six layers is built to locate and classify the eye. With the bounding box found by Faster R-CNN, the pupillary region is located using a Gaussian mixture model. Then, the circular boundary of the pupillary region is fit according to five key boundary points. A boundary point selection algorithm is used to find the boundary points of the limbus, and the circular boundary of the limbus is constructed using these boundary points. Experimental results showed that the proposed iris segmentation method achieved 95.49% accuracy on the challenging CASIA-Iris-Thousand database.

    关键词: Iris segmentation,Faster R-CNN,Gaussian mixture model,Boundary point selection,Deep learning

    更新于2025-09-23 15:22:29

  • Detection of surface defects on solar cells by fusing Multi-channel convolution neural networks

    摘要: Manufacturing process defects or artificial operation mistakes may lead to solar cells having surface cracks, over welding, black edges, unsoldered areas, and other minor defects on their surfaces. These defects will reduce the efficiency of solar cells or even make them completely useless. In this paper, a detection algorithm of surface defects on solar cells is proposed by fusing multi-channel convolution neural networks. The detection results from two different convolution neural networks, i.e., Faster R-CNN and R-FCN, are combined to improve detection precision and position accuracy. In addition, according to the inherent characteristics of the surface defects in solar cells, two other strategies are used to further improve the detection performance. First, the anchor points of the region proposal network (RPN) are set by adding multi-scale and multi-aspect regions to overcome the problem of high false negative rate caused by the limitation of anchor points. Second, in view of the subtle and concealed defects of solar cells, the hard negative sample mining strategy is used to solve the problem of low detection precision caused by the negative sample space being too large. The experimental results showed that the proposed method effectively reduced the false negative rate and the false positive rate of a single network, and it greatly improved the accuracy of the locations of defects while improving the object recall rate.

    关键词: Deep learning,Defects detection,Faster R-CNN,Solar cell,R-FCN

    更新于2025-09-23 15:21:01

  • RAMS: Remote and automatic mammogram screening

    摘要: About one in eight women in the U.S. will develop invasive breast cancer at some point in life. Breast cancer is the most common cancer found in women and if it is identified at an early stage by the use of mammograms, x-ray images of the breast, then the chances of successful treatment can be high. Typically, mammograms are screened by radiologists who determine whether a biopsy is necessary to ascertain the presence of cancer. Although historical screening methods have been effective, recent advances in computer vision and web technologies may be able to improve the accuracy, speed, cost, and accessibility of mammogram screenings. We propose a total screening solution comprised of three main components: a web service for uploading images and reviewing results, a machine learning algorithm for accepting or rejecting images as valid mammograms, and an artificial neural network for locating potential malignancies. Once an image is uploaded to our web service, an image acceptor determines whether or not the image is a mammogram. The image acceptor is primarily a one-class SVM built on features derived with a variational autoencoder. If an image is accepted as a mammogram, the malignancy identifier, a ResNet-101 Faster R-CNN, will locate tumors within the mammogram. On test data, the image acceptor had only 2 misclassifications out of 410 mammograms and 2 misclassifications out of 1,640 non-mammograms while the malignancy identifier achieved 0.951 AUROC when tested on BI-RADS 1, 5, and 6 images from the INbreast dataset.

    关键词: Faster R-CNN,SVM,Deep Learning,DDSM,Convolutional,TensorFlow,INbreast,Mammograms,Telemedicine,Artificial Neural Network

    更新于2025-09-19 17:15:36

  • Deformable Faster R-CNN with Aggregating Multi-Layer Features for Partially Occluded Object Detection in Optical Remote Sensing Images

    摘要: The region-based convolutional networks have shown their remarkable ability for object detection in optical remote sensing images. However, the standard CNNs are inherently limited to model geometric transformations due to the fixed geometric structures in its building modules. To address this, we introduce a new module named deformable convolution that is integrated into the prevailing Faster R-CNN. By adding 2D offsets to the regular sampling grid in the standard convolution, it learns the augmenting spatial sampling locations in the modules from target tasks without additional supervision. In our work, a deformable Faster R-CNN is constructed by substituting the standard convolution layer with a deformable convolution layer in the last network stage. Besides, top-down and skip connections are adopted to produce a single high-level feature map of a fine resolution, on which the predictions are to be made. To make the model robust to occlusion, a simple yet effective data augmentation technique is proposed for training the convolutional neural network. Experimental results show that our deformable Faster R-CNN improves the mean average precision by a large margin on the SORSI and HRRS dataset.

    关键词: Faster R-CNN,occluded object detection,data augmentation,Deformable CNN

    更新于2025-09-10 09:29:36

  • [IEEE 2018 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI) - Guangzhou, China (2018.10.8-2018.10.12)] 2018 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI) - R-PCNN Method to Rapidly Detect Objects on THz Images in Human Body Security Checks

    摘要: Terahertz human body security images have low resolution and a low signal-to-noise ratio. In the traditional method, image segmentation, positioning, and identification are applied to detect objects carried by humans in the THz images. However, it is difficult to satisfy the requirements of detection accuracy and speed with this approach. The current research presents a faster detection framework (R-PCNN) combining the preprocessing and structure optimization of Faster R-CNN. The experiment results show that this method can effectively improve the accuracy and speed of object detection in human body THz images. A detection accuracy of 84.5% can be achieved in dense flow scenes, with an average detection time of less than 20 milliseconds for each image.

    关键词: Image enhancement,Terahertz image,Faster R-CNN,Human body security check,Object detection

    更新于2025-09-04 15:30:14

  • [IEEE 2018 IEEE International Conference on Intelligent Transportation Systems (ITSC) - Maui, HI, USA (2018.11.4-2018.11.7)] 2018 21st International Conference on Intelligent Transportation Systems (ITSC) - Machine Learning-based Stereo Vision Algorithm for Surround View Fisheye Cameras

    摘要: Recently, automated emergency brake systems for pedestrian have been commercialized. However, they cannot detect crossing pedestrians when turning at intersections because the field of view is not wide enough. Thus, we propose to utilize a surround view camera system becoming popular by making it into stereo vision which is robust for the pedestrian recognition. However, conventional stereo camera technologies cannot be applied due to fisheye cameras and uncalibrated camera poses. Thus we have created the new method to absorb difference of the pedestrian appearance between cameras by machine learning for the stereo vision. The method of stereo matching between image patches in each camera image was designed by combining D-Brief and NCC with SVM. Good generalization performance was achieved by it compared with individual conventional algorithms. Furthermore, feature amounts of the point cloud reconstructed by the stereo pairs are utilized with Random Forest to discriminate pedestrians. The algorithm was evaluated for the actual camera images of crossing pedestrians at various intersections, and 96.0% of pedestrian tracking rate with high position detection accuracy was achieved. They were compared with Faster R-CNN as the best pattern recognition technique, and our proposed method indicated better detection performance.

    关键词: NCC,automated emergency brake systems,machine learning,SVM,Faster R-CNN,stereo vision,pedestrian detection,D-Brief,Random Forest,surround view camera system

    更新于2025-09-04 15:30:14