修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

4 条数据
?? 中文(中国)
  • Thinning ferroelectric films for high-efficiency photovoltaics based on the Schottky barrier effect

    摘要: Achieving high power conversion efficiencies (PCEs) in ferroelectric photovoltaics (PVs) is a longstanding challenge. Although recently ferroelectric thick films, composite films, and bulk crystals have all been demonstrated to exhibit PCEs >1%, these systems still suffer from severe recombination because of the fundamentally low conductivities of ferroelectrics. Further improvement of PCEs may therefore rely on thickness reduction if the reduced recombination could overcompensate for the loss in light absorption. Here, a PCE of up to 2.49% (under 365-nm ultraviolet illumination) was demonstrated in a 12-nm Pb(Zr0.2Ti0.8)O3 (PZT) ultrathin film. The strategy to realize such a high PCE consists of reducing the film thickness to be comparable with the depletion width, which can simultaneously suppress recombination and lower the series resistance. The basis of our strategy lies in the fact that the PV effect originates from the interfacial Schottky barriers, which is revealed by measuring and modeling the thickness-dependent PV characteristics. In addition, the Schottky barrier parameters (particularly the depletion width) are evaluated by investigating the thickness-dependent ferroelectric, dielectric and conduction properties. Our study therefore provides an effective strategy to obtain high-efficiency ferroelectric PVs and demonstrates the great potential of ferroelectrics for use in ultrathin-film PV devices.

    关键词: power conversion efficiency,Schottky barrier effect,ferroelectric photovoltaics,PZT ultrathin film,depletion width

    更新于2025-11-14 17:28:48

  • Giant bulk photovoltaic effect in solar cell architectures with ultra-wide bandgap Ga2O3 transparent conducting electrodes

    摘要: The use of ultra-wide bandgap transparent conducting beta gallium oxide (b-Ga2O3) thin films as electrodes in ferroelectric solar cells is reported. In a new material structure for energy applications, we report a solar cell structure (a light absorber sandwiched in between two electrodes - one of them - transparent) which is not constrained by the ShockleyeQueisser limit for open-circuit voltage (Voc) under typical indoor light. The solar blindness of the electrode enables a record-breaking bulk photovoltaic effect (BPE) with white light illumination (general use indoor light). This work opens up the perspective of ferroelectric photovoltaics which are not subject to the Shockley-Queisser limit by bringing into scene solar-blind conducting oxides.

    关键词: Bulk photovoltaic effect,Pb(Zr,Ti)O3,Solar cell architecture,Ferroelectric photovoltaics,Ga2O3,Gallium oxide,Transparent conducting oxide,Ultra-wide bandgap semiconductors

    更新于2025-09-16 10:30:52

  • Ferroelectric PZT thin films for photovoltaic application

    摘要: The ferroelectric photovoltaic response characteristics of Lead Zirconate Titanate (PZT) thin film in metal-ferroelectric-metal (MFM) configuration is studied under 33 mode upon exposure to UV radiations. PZT thin films of 180 nm are prepared on inter-digital electrodes patterned silicon substrate (with silicon dioxide as insulating layer) using chemical solution deposition (CSD) technique followed by rapid thermal annealing. PZT thin films are found to be in single phase and possess high electrical polarization (50μC/cm2). Significant increase in photocurrent and large value of open circuit voltage (1.0 V) is observed for the prepared ferroelectric photovoltaic film under UV illumination.

    关键词: Lead zirconium titanate,Chemical deposition,Polarization,Ferroelectric,Photovoltaics

    更新于2025-09-12 10:27:22

  • Enhanced photovoltaic efficiency and persisted photoresponse switchability in LaVO3/Pb(Zr0.2Ti0.8)O3 perovskite heterostructures

    摘要: For the ferroelectric photovoltaics, it is challenging to enhance the power conversion efficiency (PCE) without sacrificing the photoresponse switchability. Here, we demonstrate that enhanced PCE and good photoresponse switchability can be simultaneously achieved in perovskite heterostructures comprising narrow-gap semiconductor LaVO3 (LVO) and ferroelectric Pb(Zr0.2Ti0.8)O3 (PZT). The LVO(24 nm)/PZT(120 nm) based device exhibits a ~5-fold enhancement in PCE compared with the PZT-only based device, which is attributed to the enhanced absorption from the LVO layer and the built-in field at the LVO/PZT interface facilitating the separation of photo-generated e-h pairs. In addition, the switched photovoltage of the LVO/PZT based device is above 1 V, which is as large as that of the PZT-only based device. This persisted photoresponse switchability is obtained because the polarization can be fully switched in the LVO/PZT based devices when the LVO thickness is less than 24 nm. Our finding therefore provides a promising route for the development of the high-efficiency and highly switchable ferroelectric photovoltaic devices.

    关键词: perovskite heterostructures,ferroelectric photovoltaics,LaVO3,photoresponse switchability,power conversion efficiency,Pb(Zr0.2Ti0.8)O3

    更新于2025-09-11 14:15:04