- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Double fullerene cathode buffer layers afford highly efficient and stable inverted planar perovskite solar cells
摘要: Fullerene derivatives especially [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) with strong electron-accepting abilities have been commonly implemented as indispensable cathode buffer layers (CBLs) of inverted (p-i-n) planar perovskite solar cells (iPSCs) to facilitate electron transport. However, only a single fullerene CBL is typically used in iPSC devices, resulting in interfacial energy offset between fullerene CBL and metal cathode and consequently insufficient electron transport. Herein, we synthesized a novel bis-dimethylamino-functionalized fullerene derivative (abbreviated as PCBDMAM) and applied it as an auxiliary fullerene interlayer atop of PCBM to form a PCBM/PCBDMAM double fullerene CBL, leading to dramatic enhancement of both efficiency and ambient stability of iPSC devices. Incorporation of PCBDMAM interlayer facilitates the formation of interfacial dipole layer between PCBM and Ag cathode, resulting in decrease of the work function of the Ag cathode. As a result, the CH3NH3PbI3 (MAPbI3) iPSC devices based on PCBM/PCBDMAM double fullerene CBL exhibit the highest power conversion efficiency (PCE) of 18.11%, which is drastically higher than that of the control device based on single PCBM CBL (14.21%) and represents the highest value reported for double fullerene CBL-based iPSC devices. Moreover, due to the higher hydrophobicity of PCBDMAM than PCBM, iPSC devices based on PCBM/PCBDMAM double fullerene CBL shows an enhanced ambient stability, retaining 67% of the initial PCE after storage 1440 h exposure under the ambient atmosphere without any encapsulation, whereas only 43% retaining was achieved for the control device based on single PCBM CBL.
关键词: Cathode buffer layer,Perovskite solar cells,Work function,Interfacial engineering,Fullerene derivative
更新于2025-09-23 15:21:01
-
Over 15% Efficiency in Ternary Organic Solar Cells by Enhanced Charge Transport and Reduced Energy Loss
摘要: In this study, an efficient ternary bulk-heterojunction (BHJ) organic solar cell (OSC) is demonstrated by incorporating two acceptors, PC61BM and ITC6-4F with a polymer donor (PM6). It reveals that the addition of PC61BM not only enhances the electron mobility of the derived BHJ blend but also facilitates the exciton dissociation, resulting in a more balanced charge transport alongside with reduced trap-assisted charge recombination. Consequently, as compared to the pristine PM6:ITC6-4F device, the optimal ternary OSC is revealed to deliver an improved power conversion efficiency (PCE) of 15.11% with boosted JSC, VOC and FF simultaneously. The resultant VOC and FF are among the highest values recorded in the literature for the ternary OSCs with PCE exceeding 15%. This result thus suggests that besides improving the charge transport characteristics in devices, incorporating fullerene derivative as part of the acceptor can also improve the resultant VOC, which can reduce the energy loss to realize efficient organic photovoltaic.
关键词: energy transfer,charge transport,fullerene derivative acceptor,open circuit voltage,ternary organic solar cells
更新于2025-09-23 15:19:57
-
Functionalization of fullerene by polyethylene glycol toward promoted electron transport in inverted polymer solar cells
摘要: A novel polyethylene glycol-functionalized fullerene derivative (C60-PEGA) was synthesized by a facile one-step nucleophilic addition reaction. C60-PEGA possessed good solubility in methanol and was estimated as C60-( C8H18N)13H13O with average PEG moiety of 13 by 1H NMR, FT-IR and X-ray photoelectron spectroscopy (XPS) spectra. C60-PEGA was applied as an ETL to construct inverted bulk heterojunction polymer solar cells (inverted BHJ-PSCs) based on photoactive layers of poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b′]dithiophene-co-3-fluorothieno[3,4-b]thiophene-2-carboxylate]: [6,6]-phenyl-C71-butyric acid methyl ester (PTB7-Th: PC71BM), which achieve the best PCE of 9.25%, surpassing that of reference device based on the ZnO ETL (8.61%). The higher ETL performance of C60-PEGA ETL in BHJ-iPSC device relative to that of the ZnO ETL was attributed to the increase of electron mobility and effective electron transport from the active layer to the ITO cathode because that the reduced work function (WF) of ITO via the modification of C60-PEGA leads to the increase of short-circuit current density (Jsc) and consequent PCE.
关键词: polyethylene glycol (PEG),electron transport layers (ETLs),inverted polymer solar cells,work function,fullerene derivative
更新于2025-09-19 17:13:59
-
Fluorinated fulleropyrrolidine as universal electron transport material for organic-inorganic and all-inorganic perovskite solar cells
摘要: [6,6]-Phenyl-C61-butyric acid methylester (PC61BM) has been widely used as electron transport material (ETM) for both organic-inorganic hybrid and all inorganic perovskite solar cells (PeSCs) with inverted structure. However, PC61BM still remains to be improved due to its low electrical conductivity and inferior passivation effect towards perovskite. In this work, we synthesize two perfluorophenyl-substituted fulleropyrrolidines, 2-(perfluorophenyl)-5-phenyl-C60-fulleropyrrolidine (FP-i) and 2,5-bis-(perfluorophenyl)-C60-fulleropyrrolidine (FP-ii) via a modified 1,3-dipolar cycloaddition reaction. FP-i and FP-ii are introduced into inverted PeSCs based on organic-inorganic hybrid and all inorganic perovskites (CH3NH3PbCl3-xIx and CsPbI2Br) as ETMs. The PeSCs based on FP-i and FP-ii display good photovoltaic performance and device stability, which are superior or comparable to those with PC61BM. The mechanism studies reveal that FP-i and FP-ii possess higher electrical conductivity, more significant passivation capacity and enhanced hydrophobicity but slightly lower low unoccupied molecular orbital (LUMO) levels. These results suggest that FP-i and FP-ii are universal ETMs for both organic-inorganic hybrid and all inorganic PeSCs, which are better or comparable to conventional ETM of PC61BM.
关键词: Inverted perovskite solar cell,Fullerene derivative,Passivation effect,Device stability,Electron transporting layer
更新于2025-09-16 10:30:52