- 标题
- 摘要
- 关键词
- 实验方案
- 产品
过滤筛选
- 2019
- 2018
- parasitic patches
- Direct coupled
- gap coupled
- hybrid coupled
- composite mode
- Pumped hydro storage
- Reliability
- Particle swarm optimization
- Hybrid system
- photovoltaic power
- Electrical Engineering and Automation
- Electronic Science and Technology
- State Grid Sichuan Electric Power Research Institute
- SVKM’s DJSCE
- University of Electronic Science and Technology of China
- State Grid Sichuan Electric Power Company
- DIAT
- Aalborg University
- Tsinghua Sichuan Energy Internet Research Institute
-
New insights into active-area-dependent performance of hybrid perovskite solar cells
摘要: The morphology of hybrid perovskite thin films depends strongly on the processing parameters due to its complex crystallization kinetics from a solution to solid perovskite halide phase. It is also profoundly sensitive to the device area of the deposited thin film, and hence reproducible photoconversion efficiency (PCE) remained a bottleneck for the fabrication of efficient photovoltaic devices having large active area. The present work focuses on the investigations of the relationship between perovskite ink concentration-dependent quality of the perovskite overlayer and PCE of the perovskite solar cells (PSC) while scaling-up process. The field-emission scanning electron microscopy images revealed that the surface coverage of perovskite overlayer depends on the concentration of perovskite solution and device area. The active-area-dependent current density (J)-voltage (V) and external quantum efficiency measurements identify morphology-dependent variation in charge-transport/recombination pathways. We confirmed that among different precursor concentrations, 40 wt% perovskite ink is suitable to produce uniform perovskite overlayer over 1 cm2. As a result, highly reproducible PCE * 13% has been achieved for the PSC having an active area of 1 cm2. Overall, our findings significantly provide new insights into the active-area-dependent PCE of PSC.
关键词: morphology,hybrid perovskite,charge-transport,photoconversion efficiency,solar cells,recombination pathways
更新于2025-11-19 16:56:42
-
Saponification Precipitation Method of CsPbBr3 Nanocrystals with Blue-Green Tunable Emission
摘要: We report on a new synthesis process for halide perovskite nanoplatelets and nanoplates that switches the production process of the cesium precursor from a fatty acid/cesium salt reaction to a cesium base/fatty acid ester reaction, thus enabling the reaction to occur in ambient conditions in minutes instead of hours. The saponification precipitation process reported here, as a result, does not require a vacuum oven or inert reaction environment in obtaining the cesium precursor, or any part of the reaction. Furthermore, the process creates a hygroscopic byproduct that results in a self-drying synthesis. The obtained perovskite nanocrystals exhibit a blue-green tunable emission that occurs via quantum confinement effect, phase, and morphology change. The consequence of these physical processes is that the band gap is highly tunable with temperature and the resulting nanocrystals show remarkable optical properties, while greatly simplifying the production of halide perovskite nanoplatelets and nanoplates.
关键词: Blue-Green Tunable Emission,Saponification Precipitation Method,Hybrid Materials,Magnetic,CsPbBr3 Nanocrystals,Plasmonics,Optical
更新于2025-11-19 16:46:39
-
Laser-induced synthesis and photocatalytic properties of hybrid organic–inorganic composite layers
摘要: A laser-based method was developed for the synthesis and simultaneous deposition of multicomponent hybrid thin layers consisting of nanoentities, graphene oxide (GO) platelets, transition metal oxide nanoparticles, urea, and graphitic carbon nitride (g-C3N4) for environmental applications. The photocatalytic properties of the layers were tested through the degradation of methyl orange organic dye probing molecule. It was further demonstrated that the synthesized hybrid compounds are suitable for the photodegradation of chloramphenicol, a widely used broad-spectrum antibiotic, active against Gram-positive and Gram-negative bacteria. However, released in aquatic media represents a serious environmental hazard, especially owing to the formation of antibiotic-resistant bacteria. The obtained results revealed that organic, urea molecules can become an alternative to noble metals co-catalysts, promoting the separation and transfer of photoinduced charge carriers in catalytic composite systems. Laser radiation induces the reduction of GO platelets and the formation of graphene-like material. During the same synthesis process, g-C3N4 was produced, by laser pyrolysis of urea molecules, without any additional heat treatment. The layers exhibit high photocatalytic activity, being a promising material for photodegradation of organic pollutants in wastewater.
关键词: transition metal oxide nanoparticles,urea,photocatalytic properties,hybrid organic–inorganic composite layers,graphene oxide,graphitic carbon nitride,methyl orange,laser-based synthesis,chloramphenicol
更新于2025-11-14 17:04:02
-
Structural and photocatalytic properties of co-doped hybrid ZrO2–TiO2 photocatalysts
摘要: In this study, pure TiO2, ZrO2, and hybrid ZrO2–TiO2 photocatalysts were synthesized through solgel process and calcined at three different temperatures. The synthesized photocatalysts were characterized using powder X-ray diffraction (PXRD), field-emission scanning electron microscopy (FESEM), Brunauer–Emmet–Teller (BET), ultraviolet–visible (UV–Vis) spectrometer, and photoluminescence (PL) spectrometer. The PXRD patterns show that the rutile phase of TiO2 was suppressed through co-doping with ZrO2 and produced small crystallite size. The hybrid photocatalysts with small crystallite size recorded the highest surface area of 114.7 m2/g compared to pure TiO2 and ZrO2 photocatalysts as confirmed by BET analysis. Irregular size and shape was observed in the hybrid photocatalysts compared to spherical shape and size in TiO2 and flaky shape in ZrO2 as shown by the FESEM images. The optical properties of the photocatalysts investigated using UV–Vis spectroscopy showed a decrease in band gap energy of pure TiO2 through linear extrapolation from the Tauc’s plot despite the slightly higher band gap energy of the hybrid photocatalysts. However, PL analysis showed that doping of ZrO2 into TiO2 increased the separation efficiency of the electron–hole pairs and enhanced the photocatalytic activity. The phenol degradation of the hybrid ZrO2–TiO2 photocatalysts was higher compared to those of the pure TiO2 and ZrO2.
关键词: Hybrid TiO2–ZrO2 photocatalysts,Solgel,Phenol degradation
更新于2025-11-14 15:25:21
-
Conductive Films Based on Sandwich Structures of Carbon Nanotubes/Silver Nanowires for Stretchable Interconnects
摘要: A variety of conductive films made of a hybrid of two conductive nanomaterials have been used as stretchable electrodes or interconnectors, desirable for stretchable electronic devices. Their intrinsic stretchability of electrical conductivity would allow for accommodating mechanical strain to a certain extent under various deformations. However, few efforts have been made to enhance the interactions between two conductive components in a hybrid system. Herein, we reported new conductive films with tri-layer sandwich structures based on CNTs and AgNWs, encapsulated in silicone rubber, exhibited high stretchability along with insignificant piezoresistivity. They would be suitable to be stretchable interconnectors. A successive vacuum filtration method was used to stack the conductive components layer by layer. The effects of the stacking sequence and the interactions between layers on the stretchability and stability of electrical properties under mechanical deformations were studied. In the case of a tri-layer conductive film comprising two CNT outer layers and one AgNW central layer in presence of enhanced interfacial interactions, it showed exceptionally durability of withstanding repetitive deformations.
关键词: hybrid,silver nanowires,sandwich structure,carbon nanotubes,Stretchable electronics
更新于2025-11-14 15:15:56
-
Biocompatible organic–inorganic hybrid materials based on nucleobases and titanium developed by molecular layer deposition
摘要: We have constructed thin films of organic–inorganic hybrid character by combining titanium tetra-isopropoxide (TTIP) and the nucleobases thymine, uracil or adenine using the molecular layer deposition (MLD) approach. Such materials have potential as bio-active coatings, and the bioactivity of these films is described in our recent work [Momtazi, L.; Dartt, D. A.; Nilsen, O.; Eidet, J. R. J. Biomed. Mater. Res., Part A 2018, 106, 3090–3098. doi:10.1002/jbm.a.36499]. The growth was followed by in situ quartz crystal microbalance (QCM) measurements and all systems exhibited atomic layer deposition (ALD) type of growth. The adenine system has an ALD temperature window between 250 and 300 °C, while an overall reduction in growth rate with increasing temperature was observed for the uracil and thymine systems. The bonding modes of the films have been further characterized by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and X-ray diffraction, confirming the hybrid nature of the as-deposited films with an amorphous structure where partial inclusion of the TTIP molecule occurs during growth. The films are highly hydrophilic, while the nucleobases do leach in water providing an amorphous structure mainly of TiO2 with reduced density and index of refraction.
关键词: bioactive materials,ALD,MLD,hybrid materials,nucleobases
更新于2025-11-14 15:14:40
-
Growth and characterization of hybrid (HoGO/P3HT) graphene-based nanostructures for photovoltaic (PV) applications.
摘要: Herein, we present a comparative study between nanostructures of poly(3-hexylthiophene) (P3HT), Holmium-Graphene Oxide (HoGO) nanocomposite and hybrid HoGO/P3HT thin-film nanostructures in terms of structural, morphological and spectroscopic properties. Specifically, the graphene based GO nanostructure was functionalized with rear earth ion Ho(III) to improve its mobility. Furthermore, semiconducting P3HT nanostructure was successfully grown with HoGO nanocomposite creating hybrid HoGO/P3HT nanostructure for energy materials. The nanostructures were characterized by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), (FTIR) and UV/VIS/NIR spectroscopy. The interaction between HoGO and HoGO/P3HT nanostructures is evidenced through substantial variations in nanoparticle morphologies. FTIR results provided the evidence of the presence of different types of carbon functionalities in the nanostructures. From the absorption spectra, growth of hybrid HoGO/P3HT nanostructure broadened the absorbance with a slight decrease in %. These nanostructures open a promising direction on growth of hybrids for photovoltaic applications because of their interesting optical properties.
关键词: nanostructures,Hybrid,nanocomposite,thin-film,photovoltaics
更新于2025-10-22 19:40:53
-
AlN-based hybrid thin films with self-assembled plasmonic Au and Ag nanoinclusions
摘要: Aluminum nitride (AlN)-based two-phase nanocomposite thin films with plasmonic Au and Ag nanoinclusions have been demonstrated using a one-step thin film growth method. Such AlN-based nanocomposites, while maintaining their wide bandgap semiconductor behavior, present tunable optical properties such as bandgap, plasmonic resonance, and complex dielectric function. Depending on the growth atmosphere, the metallic nanoinclusions self-organized into different geometries, such as nano-dendrites, nano-disks, and nanoparticles, providing enhanced optical anisotropy in-plane and out-of-plane. The infrared transmission measurements demonstrate the signature peaks of AlN as well as a broad transmission window attributed to the plasmonic nanoinclusions. This unique AlN-metal hybrid thin film platform provides a route to modulate the optical response of wide bandgap III-V nitride semiconductors towards infrared sensing or all optical based integrated circuits.
关键词: plasmonic Au and Ag nanoinclusions,infrared sensing,integrated circuits,AlN-based hybrid thin films,optical properties
更新于2025-10-22 19:40:53
-
NIR light-triggered gelling <i>in situ</i> of porous silicon nanoparticles/PEGDA hybrid hydrogels for localized combinatorial therapy of cancer cells
摘要: Porous silicon-based nanocomposite hydrogels were readily constructed with the gelation of poly(ethylene glycol) double acrylates (PEGDA) macromers, due to the initiation of singlet oxygen photosensitized with porous silicon nanoparticles (PSiNPs) under near-infrared (NIR) light irradiation. Multifunctional PSiNPs/PEGDA nanocomposite hydrogels showed strong ?uorescence, excellent biodegradability, signi?cant photothermal effect, and sustained drug release with high ef?ciency (>80%). Finally, in situ growth of PSiNPs/PEGDA hybrid hydrogels on cancer cells was also achieved by NIR light, and then their biodegradation, drug release and synergistic chemo-phototherapeutic ef?cacy were further demonstrated, which could provide a signi?cant localized inhibition for the viability, adherence, and migration of cancer cells in vitro. Thus, we suggested that these resultant hybrid hydrogels would have important potential on local cancer therapy in future clinical practice.
关键词: porous silicon nanoparticles,hybrid hydrogels,therapy,insitu gelation,localized cancer
更新于2025-09-23 15:23:52
-
P-12.5: High Transmittance Color Filter of Hybrid
摘要: The particles of pigment can scatter source light, using a dye reduces the proportion of pigment, so the transmittance was improved nicely. The hybrid color filter also exhibit tuneable emission characteristics, another the hue of dye is better, thus higher purity red, green and Blue (RGB) primary colors be got, the hybrid also can be used in wide-color-gamut products, the transmittance enhance 10%~13% in C-light and 10%~12% in backlight (BL) at the white balance.
关键词: Pigment,C-light,Hybrid,Backlight,Transmission ratio,Color filter,Wide color gamut,Liquid crystal display,Dye
更新于2025-09-23 15:23:52