修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

3 条数据
?? 中文(中国)
  • Development of Method Enhanced Laser Ablation Efficiency According to Fine Curvature of the Polymer through the Preliminary Preparation Process Using UV Picosecond Laser

    摘要: In processes using the ultrashort pulsed laser, the phenomenon that the ablation efficiency is reduced due to the increase of the shielding effect of the generated plume is increasingly caused by the use of the high power and high repetition rate. A new method is needed to prevent a decrease in ablation efficiency in processing using an ultrashort pulsed laser. In this study, the proposed a processing method that can improve the ablation efficiency by providing an efficient escape path of plume, and examine the feasibility of a new processing method. The new method we proposed is a method of laser processing after generating a fine curvature in the polymer as a preliminary preparation. The fine curvature of the polymer produced by the preliminary preparation induces an artificial chimney-like opening along the path of the incident beam during laser processing, thereby enabling the plume to be effectively removed. The experiment for examine the feasibility through a new method was conducted using a 10-picosecond laser of UV wavelength with two optical systems. As a new processing method, when processing with ultrashort pulse laser, it was observed that the ablation efficiency improved.

    关键词: fine curvature of polymer,picosecond pulse laser,artificial chimney,laser ablation,enhanced laser ablation efficiency

    更新于2025-09-23 15:19:57

  • Synthesis of colloidal aluminum nanoparticles by nanosecond pulsed laser and the effect of external electric field and laser fluence on ablation rate

    摘要: In this paper, the ablation of aluminum was induced by a Q-switched Nd:YAG laser (1064 nm, ~10 ns and 10 Hz) in ethanol at room temperature for producing colloidal nanoparticles. Two different experimental schemes (i.e. the electric field parallel, and perpendicular to the laser propagation path) were used to investigate the dependence of ablation rate on the external electric field characteristics and the laser fluence. The results show that at a constant laser fluence, regardless of the type of scheme, the ablation rate is increased in the presence of electric field. However, the characteristics of craters strongly depend on the direction of the electric field. The results also show that at both schemes with a constant electric field, the ablation rate rises when the laser fluence is increased. According to the results, it can be concluded that the ablation rate enhanced by applying electric field and increasing laser pulse energy.

    关键词: Ablation rate,Laser materials processing,Laser ablation efficiency,Electric field,Ethanol interaction ambient

    更新于2025-09-16 10:30:52

  • Enhancement of ablation rate and production of colloidal nanoparticles by irradiation of metals with nanosecond pulsed laser in presence of external electric field

    摘要: This paper presents the results of experimental study on the effect of electric field on the ablation rate during the nanosecond pulsed laser ablation of aluminum and copper in deionized water. The effect of electric field strength on the material removal rate and its mechanisms were investigated both in the electric field parallel and perpendicular to the laser beam path schemes. The ablation rate was estimated by measuring the dimensions of craters on the target induced by laser. The crater dimensions and optical properties of the produced colloidal nanoparticles were characterized by means of optical microscopy and UV–Vis absorption spectroscopy, respectively. The results indicate that pulsed laser ablation in the presence of an electric field significantly leads to higher material removal rate. The experimental results also confirm that the crater geometry extremely depends on the direction of the electric field with respect to the laser beam direction. The UV–Vis spectra show that the nanoparticles production efficiency increases with increasing the electric field strength.

    关键词: Electric field,Colloidal nanoparticles,Laser ablation efficiency,Ablation rate

    更新于2025-09-11 14:15:04