- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Influence of processing parameters on the microstructure and tensile property of 85 W-15Ni produced by laser direct deposition
摘要: The plate-like shape 85W-15Ni parts were produced by laser direct deposition technology with different processing parameters (laser power and scanning speed). The influence of processing parameters and their corresponding laser energy density on the microstructural characterization, phase composition and tensile property of 85W-15Ni samples was investigated. The results show that the relative density of samples increased with the laser energy density and the densification trend started to slow as the laser energy density reached 380-400 J/mm3, though the highest density value was obtained with laser energy of 425 J/mm3. With the increase of laser energy density, more disorder and fine W dendrites existed at the bonding region between deposition layers and more W-W grain boundaries formed at the central region of the layer. The 85W-15Ni samples produced with different processing parameters consisted of W and γ-Ni phase. To improve the tensile property, it is necessary to increase the laser energy density to obtain denser structure and reduce the residual pores or gaps. However, the excessive laser energy density resulted in the formation of more W-W grain boundaries that were detrimental to the tensile property. The best tensile properties were obtained at the laser energy density of 395 J/mm3.
关键词: 85W-15Ni,Laser direct deposition,Tensile property,Laser energy density,microstructural characterization
更新于2025-11-28 14:24:20
-
Energy efficiency evaluation of metal laser direct deposition based on process characteristics and empirical modeling
摘要: Metal laser direct deposition (MLDD) is a typical process in additive manufacturing (AM), which permits the build of complex and fully dense metallic parts by using laser to melt the metal powder layer by layer. However, the process is characterized by high energy consumption and low energy efficiency. This paper established an empirical model to characterize the relationship between process parameters and energy efficiency for MLDD based on the essence of thermodynamics physical energy conversion. Additionally, a recognition method of cross-sectional profile of the deposited layer was achieved by adding tungsten carbide (WC) powder, which greatly improved the measurement reliability. Taguchi experiment and regression identification method were applied, and the relative error of the model was less than 10%. The results show that laser power has significant influence on the process energy efficiency of MLDD. The energy efficiency of single-track multi-layer stacking (SMS) process and multi-track single-layer lapping (MSL) process increased by 5.7% and 50.3%, respectively, under the optimal process parameter condition. The proposed model can be used effectively for the energy efficiency evaluation and offer the potential for improving the sustainability of MLDD.
关键词: Energy efficiency,Metal laser direct deposition (MLDD),Cross-sectional profile,Taguchi experiment
更新于2025-11-28 14:24:20
-
Effect of Static Magnetic Field on the Evolution of Residual Stress and Microstructure of Laser Remelted Inconel 718 Superalloy
摘要: As a typical additive manufacturing technique, direct energy deposition is restricted from further application due to the presence of residual stress and the structural deformation. Thus, minimizing the residual stress plays a crucial role in additive manufacturing. In this work, a transverse static magnetic field is introduced in the laser remelting of Inconel 718 superalloy to investigate the effects on residual stress and microstructural change. The x-ray diffraction technique was used to examine the residual stress variation. Optical microscope and scanning electron microscope were applied to observe the microstructure evolution. It was found that the compressive residual stress of the remelted region was notably reduced from 392.50 to 315.45 MPa under the effect of the magnetic field of 0.55 T. Furthermore, it was observed that the average dendrite spacing was reduced by about 32% under the magnetic field. During the laser remelting process, the imposed electromagnetic force minimized the flow field within the molten pool, inhibiting the heat transfer and minimizing the cooling rate. These directly reduced the residual stresses. Based on research findings, the magnetic field can be a potential method to eliminate the residual stress in laser additive manufacturing components.
关键词: laser direct deposition,static magnetic field,Inconel 718 superalloy,laser remelting,residual stress,thermoelectric magnetic force
更新于2025-09-23 15:21:01