修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

1 条数据
?? 中文(中国)
  • Silicon-silver dendritic nanostructures for the enhanced photoelectrochemical splitting of natural water

    摘要: We report on the photoelectrochemical (PEC) splitting of natural water (pH 7) using silicon (Si) nanowires fitted with silver (Ag) dendrites (dendritic nanostructures) as working electrodes (photoanodes). A detailed study of the PEC water splitting process was carried out using linear sweep voltammetry, electrochemical impedance spectroscopy (EIS) and Mott-Schottky (M-S) measurements. The measured photocurrent density of 1.7 mA/cm2 at an external voltage of ?0.6 V under white light illumination demonstrates the efficient decomposition of natural water using dendritic nanostructures as working electrodes. This decomposition is mainly attributed to a significant strengthening of the effective interface between working electrode surface/water and to a decline in the recombination of photoinduced carriers in the presence of Ag dendrites. We propose that the Schottky barrier between Si and Ag dendritic nanostructures favors enhanced photoinduced charge carrier separation. Photoinduced holes in Si are transferred to Ag dendrites (nano branches and leaves) that serve as a charge sink to effectively carry out the PEC oxidation of water. Photoinduced charge carrier separation enhancement was corroborated by the kinetics of our carrier recombination study. We obtained a reasonably long transient period of 80 s for the photoinduced carriers. EIS results show that the charge transfer resistance (150 Ω) of the dendritic nanostructure surface is low enough to promote interfacial charge transfer. This resistance generated a large carrier concentration of ~1.1 × 1020 cm?3 at the working electrode/water interface according to an M-S analysis. An applied bias-photon-to-current-conversion efficiency level of roughly 4% is reported, demonstrating the efficient PEC splitting of natural water.

    关键词: Linear sweep voltammetry,Photoinduced charge carrier separation enhancement,Photoelectrochemical,Applied bias-photon-to-current-conversion efficiency,Ag dendrites

    更新于2025-09-10 09:29:36