修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

43 条数据
?? 中文(中国)
  • One-Step Photochemical Synthesis of Transition Metal - Graphene Hybrid for Electrocatalysis

    摘要: For widespread use of renewable energy such as water splitting, the development of electrocatalysts on a large-scale at a low-cost that remains safe and environmentally friendly is still a great challenge. Here, we report the use of α-aminoalkyl radicals in a one-step procedure that synthesizes transition metal nanoparticle - graphene composites via photoreduction. The organic photocatalyst 2-Methyl-1-[4-(methylthio)phenyl]-2-(morpholinyl) phenyl]-1-butanone (I-907) undergoes Norrish Type I photocleavage to generate strongly reducing α-aminoalkyl radicals, when exposed to UVA. For the first time we demonstrate its ability to reduce graphene oxide (GO) and successfully synthesize Co3O4 nanoparticles decorated on graphene (Co3O4NP-rGO). The α-aminoalkyl radicals simultaneously reduce GO and Co2+ salts which nucleates on the negatively charged GO sheets and grows to form nanoparticles. The resulting Co3O4NP-rGO showed decent catalytic activity and stability for the Oxygen Evolution Reaction (OER). Our work introduces a new and environmentally friendly synthesis procedure that can be used to produce earth abundant transition metal electrocatalysts.

    关键词: photochemical synthesis,reduced graphene oxide,Graphene oxide,α-aminoalkyl radicals,water oxidation,metal nanoparticles

    更新于2025-11-19 16:56:35

  • Study of the Effect of Optical Illumination on Resistive Switching in ZrO2(Y) Films with Au Nanoparticles by Tunneling Atomic Force Microscopy

    摘要: The effect of optical illumination on the resistive switching in ultrathin (~4 nm) ZrO2(Y) films with embedded single-layer Au nanoparticle arrays 2–3 nm in size is studied via tunneling atomic force microscopy. The ZrO2(Y) films with Au nanoparticles are grown by layerwise magnetron deposition onto glass substrates with a conductive indium-tin-oxide sublayer, followed by annealing at 450°C. An increase in hysteresis due to bipolar resistive switching in the ZrO2(Y) films is observed on the cyclic current–voltage curves of the microscope probe-to-sample contact. The effect is found to manifest itself in a dense Au nanoparticle array (~660 nm) when the contact area is photoexcited through a transparent substrate exposed to the radiation of a semiconductor laser at the plasmon-resonance wavelength. The effect is attributed to the photon-assisted field emission of electrons from Au nanoparticles to the conduction band of ZrO2(Y) in a strong electric field between the microscope probe and the indium-tin-oxide substrate under plasmon-resonance conditions.

    关键词: plasmon resonance,resistive switching,yttrium-stabilized zirconium dioxide,metal nanoparticles,atomic force microscopy

    更新于2025-11-19 16:56:35

  • Ultrathin and Isotropic Metal Sulfide Wrapping on Plasmonic Metal Nanoparticles for SERS-based Detection of Trace Heavy Metal Ions.

    摘要: A facile and general strategy is presented for homogenous and ultrathin metal sulfide-wrapping on plasmonic metal (PM) nanoparticles (NPs) based on a thiourea-induced isotropic shell growth. This strategy is typically implemented just via adding the thiourea into pre-formed PM colloidal solutions containing target metal ions. The validity of this strategy is demonstrated by taking the wrapped NPs with Au core and CuS shell or Au@CuS NPs as an example. They are successfully fabricated via adding the thiourea and Cu2+ solutions into pre-formed Au NP colloidal solution. The CuS shell layer is highly homogenous (<10% in relative standard deviation of shell thickness), regardless of the NPs’ shape or curvature. The shell thickness can be controlled from tens down to 0.5 nm just by the addition amounts of the shell precursors. The formation of the shell layer on the Au NPs can be attributed to the alternative deposition of Cu2+ and S2- ions on the thiourea-modified surface of Au NPs in the solution, which induces the isotropic shell growth. Further, this strategy is of good universality. Many other sulfide-wrapped PM NPs, such as Ag@CuS, Au@PtS2, Au@HgS, Ag@Ag2S NPs and Ag@CuS nanorods have been successfully obtained with homogeneous and ultrathin shells. Importantly, such ultrathin sulfide-wrapped PM NPs can be used for SERS-based detection of trace heavy metal ions with strong anti-interference via ion exchange process between the metal sulfide shell and heavy metal ions. This study provides a simple and controllable route for wrapping the homogenous and ultrathin sulfide layers on the PM NPs, and such wrapped NPs have good practical applications in the SERS-based detection of trace heavy metal ions.

    关键词: Plasmonic metal nanoparticles,Trace heavy metal ions,Ultrathin sulfide wrapping,Thiourea-induced isotropic shell growth,SERS-based detection

    更新于2025-11-14 17:04:02

  • Unravelling the effect of charge dynamics at the plasmonic metal/semiconductor interface for CO2 photoreduction

    摘要: Sunlight plays a critical role in the development of emerging sustainable energy conversion and storage technologies. Light-induced CO2 reduction by artificial photosynthesis is one of the cornerstones to produce renewable fuels and environmentally friendly chemicals. Interface interactions between plasmonic metal nanoparticles and semiconductors exhibit improved photoactivities under a wide range of the solar spectrum. However, the photo-induced charge transfer processes and their influence on photocatalysis with these materials are still under debate, mainly due to the complexity of the involved routes occurring at different timescales. Here, we use a combination of advanced in situ and time-resolved spectroscopies covering different timescales, combined with theoretical calculations, to unravel the overall mechanism of photocatalytic CO2 reduction by Ag/TiO2 catalysts. Our findings provide evidence of the key factors determining the enhancement of photoactivity under ultraviolet and visible irradiation, which have important implications for the design of solar energy conversion materials.

    关键词: Ag/TiO2 catalysts,photocatalysis,plasmonic metal nanoparticles,sustainable energy,solar energy conversion,artificial photosynthesis

    更新于2025-10-22 19:40:53

  • DNA Engineered Noble Metal Nanoparticles (Fundamentals and State-of-the-art-of Nanobiotechnology) || Photochemical and Photophysical Events

    摘要: DNA Engineered Noble Metal Nanoparticles: Fundamentals and State-of-the-art of Nanobiotechnology. This chapter covers photochemical and photophysical events involving noble metal nanoparticles, DNA nucleobases, DNA/PNA interactions, DNA-dye conjugates, DNA-AuNP-dye conjugates, DNA-gold nanoparticle conjugates, DNA-AgNPs, and hot gold nanoparticles, discussing their applications in bioanalysis, spectroscopy, photothermal therapy, imaging, and sensing.

    关键词: biosensing,nanobiotechnology,localized surface plasmon resonance,noble metal nanoparticles,photophysical events,DNA,photochemical events,photothermal therapy,fluorescence

    更新于2025-09-23 15:23:52

  • Effect of different hardness and melting point of the metallic surfaces on structural and optical properties of synthesized nanoparticles

    摘要: The relations between macroscopic and microscopic characteristics of materials are of utmost importance for synthesis of multi-atomic structures with advanced properties. We analyze the influence of pulse duration, pulse energy and temperature of liquid on the process of formation of nanoparticles (NPs) of the metals (In, Sn, Zn and W) with different hardness and melting temperature by laser ablation in liquid environment. Composition, morphology dynamics and properties of nanoparticle suspensions are studied using TEM analysis and Z-scan technique. The nonlinear optical properties of NPs are analyzed at 800 and 400 nm using 60 fs and 200 ps pulses. We show that the temperature of liquid environment influences the formation of NPs and their nonlinear optical properties. In addition, pulse energy have little influence on the formation, morphology and size of NPs during ablation of low hardness and melting point metal (In). However, pulse duration plays a very important role during the formation of NPs, especially the ultra-short pulse has a positive effect on the preparation of NPs with smaller particle size.

    关键词: nonlinear optical properties,metal nanoparticles,laser ablation in liquid

    更新于2025-09-23 15:23:52

  • Gas Sensing with Iridium Oxide Nanoparticle Decorated Carbon Nanotubes

    摘要: The properties of multi-wall carbon nanotubes decorated with iridium oxide nanoparticles (IrOx-MWCNTs) are studied to detect harmful gases such as nitrogen dioxide and ammonia. IrOx nanoparticles were synthetized using a two-step method, based on a hydrolysis and acid condensation growth mechanism. The metal oxide nanoparticles obtained were employed for decorating the sidewalls of carbon nanotubes. Iridium-oxide nanoparticle decorated carbon nanotube material showed higher and more stable responses towards NH3 and NO2 than bare carbon nanotubes under different experimental conditions, establishing the optimal operating temperatures and estimating the limits of detection and quantification. Furthermore, the nanomaterials employed were studied using different morphological and compositional characterization techniques and a gas sensing mechanism is proposed.

    关键词: carbon nanotubes,relative humidity effect,metal nanoparticles,iridium oxide,chemoresistive gas sensor

    更新于2025-09-23 15:22:29

  • Optical Control of Biomimetic Nanoparticle Catalysts Based Upon the Metal Component

    摘要: Nanoparticle catalysts provide an intriguing route to achieving sustainable reactivity. Recent evidence has suggested that both the underlying metallic core and the passivating ligand layer can be exploited to control reactivity. The intimate interactions between the core metal and structure of the ligand layer can change based upon the metal used to generate the catalytic particle. Through judicious selection of both components, nanoparticle catalytic systems can be designed to be stimuli responsive for controlled reactivity. Herein we demonstrate the effects of the underlying metal on the optically modulated catalytic activity of peptide-capped noble metal nanoparticles. For this, a photoswitch was incorporated into the peptide that enables reversible reconfiguration of the bioligand overlayer structure between two conformations based upon the isomerization state of the photoswitch. These changes in activity are dependent upon the inorganic metal of the particle core, and we exploit this dependence to demonstrate changes in the activity. The materials were fully characterized via spectroscopic methods and microscopy to correlate the observed reactivity to the material composition. The results provide new pathways to achieve remotely responsive catalysts that could be important for controlled multistep reactions or be exploited for other applications including biosensing and plasmonic devices.

    关键词: optically modulated catalytic activity,peptide-capped noble metal nanoparticles,biosensing,Nanoparticle catalysts,photoswitch,plasmonic devices

    更新于2025-09-23 15:21:21

  • [IEEE 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Chicago, IL, USA (2019.6.16-2019.6.21)] 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Efficiency Improvement of Planar Silicon Solar Cells Utilizing Localized Surface Plasmon Resonance of Silver Nanoparticles

    摘要: In this work we develop a time- and cost-effective method of fabricating an antireflection structure on Si solar cells utilizing the localized surface plasmon resonance (LSPR) of Ag nanoparticles (NPs). Covered with an Al2O3 layer to prevent degradation, the NP decorated Si solar cell exhibits a broadband light absorption enhancement, having a low weighted average spectral reflectance (Rave) value of 9.5%, and exhibits the highest absolute gain of 19.2% in external quantum efficiency (EQE) at 700 nm and an overall 20% relative increase in power efficiency (η) compared to the reference Si solar cell without NPs.

    关键词: metal nanoparticles,localized surface plasmon resonance,antireflection coating,silicon

    更新于2025-09-23 15:21:01

  • Application Laser Transfer of Metal Nanoparticles to Bacterial Biofilms

    摘要: The method of application laser transfer of silver and copper nanoparticles for the first time has been shown to be effective against biofilms formed on a solid substrate. It has been experimentally confirmed that this effect is not associated with the influence of the laser itself. The proposed method allows one to increase the locality, availability, and efficiency of biofilm destruction due to the bactericidal effect of metal nanoparticles with a slight direct laser effect on the biofilm.

    关键词: metal nanoparticles,laser ablation,bacterial biofilms

    更新于2025-09-23 15:21:01