- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Nanoparticle Emissions from Metal-Assisted Chemical Etching of Silicon Nanowires for Lithium Ion Batteries
摘要: As one of the most promising anode materials for high-capacity lithium ion batteries (LIBs), silicon nanowires (SiNWs) have been studied extensively. The metal-assisted chemical etching (MACE) is a low-cost and scalable method for SiNWs synthesis. Nanoparticle emissions from the MACE process, however, are of grave concerns due to their hazardous effects on both occupational and public health. In this study, both airborne and aqueous nanoparticle emissions from the MACE process for SiNWs with three sizes of 90 nm, 120 nm, and 140 nm are experimentally investigated. The prepared SiNWs are used as anodes of LIB coin cells, and the experimental results reveal that the initial discharge and charge capacities of LIB electrodes are 3636 and 2721 mAh g-1 with 90 nm SiNWs, 3779 and 2712 mAh g-1 with 120 nm SiNWs, and 3611 and 2539 mAh g-1 with 140 nm SiNWs. It is found that, for 1 kW h of LIB electrodes, the MACE process for 140 nm SiNWs produces a high concentration of airborne nanoparticle emissions of 2.48 × 109 particles/cm3; the process for 120 nm SiNWs produces a high mass concentration of aqueous particle emissions, with a value of 9.95 × 105 mg/L. The findings in this study can provide experimental data of nanoparticle emissions from the MACE process for SiNWs for LIB applications, and can help the environmental impact assessment and life cycle assessment of the technology in the future.
关键词: Lithium ion batteries (LIBs),Metal-assisted chemical etching (MACE),Nanoparticle emissions,Silicon nanowires (SiNWs)
更新于2025-09-23 15:23:52
-
Optical properties of ZnO deposited by atomic layer deposition (ALD) on Si nanowires
摘要: In this work, we report proof-of-concept results on the synthesis of Si core/ ZnO shell nanowires (SiNWs/ZnO) by combining nanosphere lithography (NSL), metal assisted chemical etching (MACE) and atomic layer deposition (ALD). The structural properties of the SiNWs/ZnO nanostructures prepared were investigated by X-ray diffraction, Raman spectroscopy, scanning and transmission electron microscopies. The X-ray diffraction analysis revealed that all samples have a hexagonal wurtzite structure. The grain sizes are found to be in the range of 7–14 nm. The optical properties of the samples were investigated using reflectance and photoluminescence spectroscopy. The study of photoluminescence (PL) spectra of SiNWs/ZnO samples showed the domination of defect emission bands, pointing to deviations of the stoichiometry of the prepared 3D ZnO nanostructures. Reduction of the PL intensity of the SiNWs/ZnO with the increase of SiNWs etching time was observed, depicting an advanced light scattering with the increase of the nanowire length. These results open up new prospects for the design of electronic and sensing devices.
关键词: nanosphere lithography (NSL),atomic layer deposition (ALD),Silicon nanowires (SiNWs),metal-assisted chemical etching (MACE),ZnO
更新于2025-09-23 15:21:21