- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Direct Silicon Heterostructures With Methylammonium Lead Iodide Perovskite for Photovoltaic Applications
摘要: We investigated the formation of photovoltaic (PV) devices using direct n-Si/MAPI (methylammonium lead tri-iodide) two-sided heterojunctions for the first time (as a possible alternative to two-terminal tandem devices) in which charge might be generated and collected from both the Si and MAPI. Test structures were used to establish that the n-Si/MAPI junction was photoactive and that spiro-OMeTAD acted as a “pinhole blocking” layer in n-Si/MAPI devices. Two-terminal “substrate” geometry devices comprising Al/n-Si/MAPI/spiro-OMeTAD/Au were fabricated and the effects of changing the thickness of the semitransparent gold electrode and the silicon resistivity were investigated. External quantum efficiency and capacitance–voltage measurements determined that the junction was one-sided in the silicon—and that the majority of the photocurrent was generated in the silicon, with there being a sharp cutoff in photoresponse above the MAPI bandgap. Construction of band diagrams indicated the presence of an upward valence band spike of up to 0.5 eV at the n-Si/MAPI interface that could impede carrier flow. Evidence for hole accumulation at this feature was seen in both Kelvin-probe transients and from unusual features in both current–voltage and capacitance–voltage measurements. The devices achieved a hysteresis-free best power conversion efficiency of 2.08%, VOC 0.46 V, JSC 11.77 mA/cm2, and FF 38.4%, demonstrating for the first time that it is possible to create a heterojunction PV device directly between the MAPI and n-Si. Further prospects for two-sided n-Si/MAPI heterojunctions are also discussed.
关键词: heterostructures,MAPI/silicon methylammonium lead iodide,methylammonium lead tri-iodide (MAPI),Heterojunctions,silicon
更新于2025-09-23 15:19:57
-
Raman scattering obtained from laser excitation of MAPbI3 single crystal
摘要: Finding renewable energy sources is of paramount importance to meet the increasing global energy demand whilst minimizing the impact on the environment. The research community has focused on solar energy as it is endlessly available, and have ranked the methylammonium lead iodide (MAPbI3) as one of the most promising candidate amongst perovskite solar cells. Despite its high efficiency, the MAPbI3 is sensitive to humidity, light, and temperature, its instability affects primarily on the crystalline structure and eventually leads to degradation. Three crystalline structures are known for this material, orthorhombic, tetragonal, and cubic which exist in different temperatures. Here we report on several processes detected from laser excitation of MAPbI3 single crystal at ambient conditions. A phase transition from tetragonal to cubic phase was induced by excitation of over 15 mW laser power. The phases were characterized by LF-Raman and photoluminescence, taken simultaneously with the increase of exciting laser power and the spectral changes were assigned to the structural differences. In addition, Raman stimulation of iodine vapors signal was observed, those vapors were generated from the core of the focus wherein the highest temperature led to degradation. The stimulated Raman phenomenon was enabled due to the unique properties of the MAPbI3 single crystal and revealed viability to use this material for additional applications in other research fields.
关键词: Methylammonium lead iodide,Stimulated Raman,Low frequency Raman,Phase transition,Single crystal
更新于2025-09-23 15:19:57
-
Effects of Electron-Phonon Coupling on Electronic Properties of Methylammonium Lead Iodide Perovskites
摘要: Temperature can have a dramatic effect on the solar efficiency of methylammonium lead iodide (CH3NH3PbI3) absorbers due to changes in the electronic structure of the system even within the range of stability of a single phase. Herein using first principles density functional theory, we investigate the electron band structure of the tetragonal and orthorhombic phases of CH3NH3PbI3 as a function of temperature. The electron-phonon interactions are computed to all orders using a Monte Carlo approach, which is needed considering that the second-order Allen-Heine-Cardona theory in electron-phonon coupling is not adequate. Our results show that the band gap increases with temperature in excellent agreement with experimental results. We verified that anharmonic effects are only important near the tetragonal-cubic phase transition temperature. We also found that temperature has a significant effect on the effective masses and Rashba coupling. At room temperature, electron–phonon coupling is found to enhance the band effective mass by a factor of two, and to diminish the Rashba coupling by the same factor compared to T=0 K values. Our results underscore the significant impact of electron-phonon coupling on electronic properties of the hybrid perovskites.
关键词: Energy Conversion and Storage,Methylammonium Lead Iodide Perovskites,Plasmonics and Optoelectronics,Electron-Phonon Coupling,Electronic Properties
更新于2025-09-10 09:29:36
-
Surfactant-Assisted Synthesis of Monodisperse Methylammonium Lead Iodide Perovskite Nanocrystals
摘要: Lead iodide based perovskites are promising optoelectronic materials ideal for solar cells. Recently emerged perovskite nanocrystals (NCs) offer more advantages including improved size-tunable band gap, structural stability, and solvent-based processing. Here we report a simple surfactant-assisted two-step synthesis to produce monodisperse PbI2 NCs which are then converted to methylammonium lead iodide perovskite NCs. Based on electron microscopy characterization, these NCs showed competitive monodispersity. Combined results from X-ray diffraction patterns, optical absorption, and photoluminescence confirmed the formation of high quality methylammonium lead iodide perovskite NCs. More importantly, by avoiding the use of hard-to-remove chemicals, the resulted perovskite NCs can be readily integrated in applications, especially solar cells through versatile solution/colloidal-based methods.
关键词: Surfactant,Perovskite,Nanoparticle,Methylammonium Lead Iodide,Micelle,Nanocrystal
更新于2025-09-04 15:30:14